专家揭秘:STM32启动过程全解

发布者:SereneJourney最新更新时间:2014-03-18 来源: elecfans关键字:STM32  启动过程  SRAM 手机看文章 扫描二维码
随时随地手机看文章

    本文主要阐述了STM32启动过程全面解析,包括启动过程的介绍、启动代码的陈列以及深入解析。

  相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:

专家揭秘:STM32启动过程全解

  1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;

  2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;

  3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;

  Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。[page]

  有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。

  程序清单一:
  ;文件“stm32f10x_vector.s”,其中注释为行号
  DATA_IN_ExtSRAM EQU 0 ;1
  Stack_Size EQU 0x00000400 ;2
  AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3
  Stack_Mem SPACE Stack_Size ;4
  __initial_sp ;5
  Heap_Size EQU 0x00000400 ;6
  AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7
  __heap_base ;8
  Heap_Mem SPACE Heap_Size ;9
  __heap_limit ;10
  THUMB ;11
  PRESERVE8 ;12
  IMPORT NMIException ;13
  IMPORT HardFaultException ;14
  IMPORT MemManageException ;15
  IMPORT BusFaultException ;16
  IMPORT UsageFaultException ;17
  IMPORT SVCHandler ;18
  IMPORT DebugMonitor ;19
  IMPORT PendSVC ;20
  IMPORT SysTickHandler ;21
  IMPORT WWDG_IRQHandler ;22
  IMPORT PVD_IRQHandler ;23
  IMPORT TAMPER_IRQHandler ;24
  IMPORT RTC_IRQHandler ;25
  IMPORT FLASH_IRQHandler ;26
  IMPORT RCC_IRQHandler ;27
  IMPORT EXTI0_IRQHandler ;28
  IMPORT EXTI1_IRQHandler ;29
  IMPORT EXTI2_IRQHandler ;30
  IMPORT EXTI3_IRQHandler ;31
  IMPORT EXTI4_IRQHandler ;32
  IMPORT DMA1_Channel1_IRQHandler ;33
  IMPORT DMA1_Channel2_IRQHandler ;34
  IMPORT DMA1_Channel3_IRQHandler ;35
  IMPORT DMA1_Channel4_IRQHandler ;36
  IMPORT DMA1_Channel5_IRQHandler ;37
  IMPORT DMA1_Channel6_IRQHandler ;38
  IMPORT DMA1_Channel7_IRQHandler ;39
  IMPORT ADC1_2_IRQHandler ;40
  IMPORT USB_HP_CAN_TX_IRQHandler ;41
  IMPORT USB_LP_CAN_RX0_IRQHandler ;42
  IMPORT CAN_RX1_IRQHandler ;43
  IMPORT CAN_SCE_IRQHandler ;44
  IMPORT EXTI9_5_IRQHandler ;45
  IMPORT TIM1_BRK_IRQHandler ;46
  IMPORT TIM1_UP_IRQHandler ;47
  IMPORT TIM1_TRG_COM_IRQHandler ;48
  IMPORT TIM1_CC_IRQHandler ;49
  IMPORT TIM2_IRQHandler ;50
  IMPORT TIM3_IRQHandler ;51
  IMPORT TIM4_IRQHandler ;52
  IMPORT I2C1_EV_IRQHandler ;53
  IMPORT I2C1_ER_IRQHandler ;54
  IMPORT I2C2_EV_IRQHandler ;55
  IMPORT I2C2_ER_IRQHandler ;56
  IMPORT SPI1_IRQHandler ;57
  IMPORT SPI2_IRQHandler ;58
  IMPORT USART1_IRQHandler ;59
  IMPORT USART2_IRQHandler ;60
  IMPORT USART3_IRQHandler ;61
  IMPORT EXTI15_10_IRQHandler ;62
  IMPORT RTCAlarm_IRQHandler ;63
  IMPORT USBWakeUp_IRQHandler ;64
  IMPORT TIM8_BRK_IRQHandler ;65
  IMPORT TIM8_UP_IRQHandler ;66
  IMPORT TIM8_TRG_COM_IRQHandler ;67
  IMPORT TIM8_CC_IRQHandler ;68
  IMPORT ADC3_IRQHandler ;69
  IMPORT FSMC_IRQHandler ;70
  IMPORT SDIO_IRQHandler ;71
  IMPORT TIM5_IRQHandler ;72
  IMPORT SPI3_IRQHandler ;73
  IMPORT UART4_IRQHandler ;74
  IMPORT UART5_IRQHandler ;75
  IMPORT TIM6_IRQHandler ;76
  IMPORT TIM7_IRQHandler ;77
  IMPORT DMA2_Channel1_IRQHandler ;78
  IMPORT DMA2_Channel2_IRQHandler ;79
  IMPORT DMA2_Channel3_IRQHandler ;80
  IMPORT DMA2_Channel4_5_IRQHandler ;81
  AREA RESET, DATA, READONLY ;82
  EXPORT __Vectors ;83
  __Vectors ;84
  DCD __initial_sp ;85
  DCD Reset_Handler ;86
  DCD NMIException ;87
  DCD HardFaultException ;88
  DCD MemManageException ;89
  DCD BusFaultException ;90
  DCD UsageFaultException ;91
  DCD 0 ;92
  DCD 0 ;93
  DCD 0 ;94
  DCD 0 ;95
  DCD SVCHandler ;96
  DCD DebugMonitor ;97
  DCD 0 ;98
  DCD PendSVC ;99
  DCD SysTickHandler ;100
  DCD WWDG_IRQHandler ;101
  DCD PVD_IRQHandler ;102
  DCD TAMPER_IRQHandler ;103
  DCD RTC_IRQHandler ;104
  DCD FLASH_IRQHandler ;105
  DCD RCC_IRQHandler ;106
  DCD EXTI0_IRQHandler ;107
  DCD EXTI1_IRQHandler ;108
  DCD EXTI2_IRQHandler ;109
  DCD EXTI3_IRQHandler ;110
  DCD EXTI4_IRQHandler ;111
  DCD DMA1_Channel1_IRQHandler ;112
  DCD DMA1_Channel2_IRQHandler ;113
  DCD DMA1_Channel3_IRQHandler ;114
  DCD DMA1_Channel4_IRQHandler ;115
  DCD DMA1_Channel5_IRQHandler ;116
  DCD DMA1_Channel6_IRQHandler ;117
  DCD DMA1_Channel7_IRQHandler ;118
  DCD ADC1_2_IRQHandler ;119
  DCD USB_HP_CAN_TX_IRQHandler ;120
  DCD USB_LP_CAN_RX0_IRQHandler ;121
  DCD CAN_RX1_IRQHandler ;122
  DCD CAN_SCE_IRQHandler ;123
  DCD EXTI9_5_IRQHandler ;124
  DCD TIM1_BRK_IRQHandler ;125
  DCD TIM1_UP_IRQHandler ;126
  DCD TIM1_TRG_COM_IRQHandler ;127
  DCD TIM1_CC_IRQHandler ;128
  DCD TIM2_IRQHandler ;129
  DCD TIM3_IRQHandler ;130
  DCD TIM4_IRQHandler ;131
  DCD I2C1_EV_IRQHandler ;132
  DCD I2C1_ER_IRQHandler ;133
  DCD I2C2_EV_IRQHandler ;134
  DCD I2C2_ER_IRQHandler ;135
  DCD SPI1_IRQHandler ;136
  DCD SPI2_IRQHandler ;137[page]
  DCD USART1_IRQHandler ;138
  DCD USART2_IRQHandler ;139
  DCD USART3_IRQHandler ;140
  DCD EXTI15_10_IRQHandler ;141
  DCD RTCAlarm_IRQHandler ;142
  DCD USBWakeUp_IRQHandler ;143
  DCD TIM8_BRK_IRQHandler ;144
  DCD TIM8_UP_IRQHandler ;145
  DCD TIM8_TRG_COM_IRQHandler ;146
  DCD TIM8_CC_IRQHandler ;147
  DCD ADC3_IRQHandler ;148
  DCD FSMC_IRQHandler ;149
  DCD SDIO_IRQHandler ;150
  DCD TIM5_IRQHandler ;151
  DCD SPI3_IRQHandler ;152
  DCD UART4_IRQHandler ;153
  DCD UART5_IRQHandler ;154
  DCD TIM6_IRQHandler ;155
  DCD TIM7_IRQHandler ;156
  DCD DMA2_Channel1_IRQHandler ;157
  DCD DMA2_Channel2_IRQHandler ;158
  DCD DMA2_Channel3_IRQHandler ;159
  DCD DMA2_Channel4_5_IRQHandler ;160
  AREA |.text|, CODE, READONLY ;161
  Reset_Handler PROC ;162
  EXPORT Reset_Handler ;163
  IF DATA_IN_ExtSRAM == 1 ;164
  LDR R0,= 0x00000114 ;165
  LDR R1,= 0x40021014 ;166
  STR R0,[R1] ;167
  LDR R0,= 0x000001E0 ;168
  LDR R1,= 0x40021018 ;169
  STR R0,[R1] ;170
  LDR R0,= 0x44BB44BB ;171
  LDR R1,= 0x40011400 ;172
  STR R0,[R1] ;173
  LDR R0,= 0xBBBBBBBB ;174
  LDR R1,= 0x40011404 ;175
  STR R0,[R1] ;176
  LDR R0,= 0xB44444BB ;177
  LDR R1,= 0x40011800 ;178
  STR R0,[R1] ;179
  LDR R0,= 0xBBBBBBBB ;180
  LDR R1,= 0x40011804 ;181
  STR R0,[R1] ;182
  LDR R0,= 0x44BBBBBB ;183
  LDR R1,= 0x40011C00 ;184
  STR R0,[R1] ;185
  LDR R0,= 0xBBBB4444 ;186
  LDR R1,= 0x40011C04 ;187
  STR R0,[R1] ;188
  LDR R0,= 0x44BBBBBB ;189
  LDR R1,= 0x40012000 ;190
  STR R0,[R1] ;191
  LDR R0,= 0x44444B44 ;192
  LDR R1,= 0x40012004 ;193
  STR R0,[R1] ;194
  LDR R0,= 0x00001011 ;195
  LDR R1,= 0xA0000010 ;196
  STR R0,[R1] ;197
  LDR R0,= 0x00000200 ;198
  LDR R1,= 0xA0000014 ;199
  STR R0,[R1] ;200
  ENDIF ;201
  IMPORT __main ;202
  LDR R0, =__main ;203
  BX R0 ;204
  ENDP ;205
  ALIGN ;206
  IF :DEF:__MICROLIB ;207
  EXPORT __initial_sp ;208
  EXPORT __heap_base ;209
  EXPORT __heap_limit ;210
  ELSE ;211
  IMPORT __use_two_region_memory ;212
  EXPORT __user_initial_stackheap ;213
  __user_initial_stackheap ;214
  LDR R0, = Heap_Mem ;215
  LDR R1, = (Stack_Mem + Stack_Size) ;216
  LDR R2, = (Heap_Mem + Heap_Size) ;217
  LDR R3, = Stack_Mem ;218
  BX LR ;219
  ALIGN ;220
  ENDIF ;221
  END ;222
  ENDIF ;223
  END ;224
 

  如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:

  ? 第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:[page]

  #define DATA_IN_ExtSRAM 0

  ? 第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:

  #define Stack_Size 0x00000400

  ? 第3行:伪指令AREA,表示

  ? 第4行:开辟一段大小为Stack_Size的内存空间作为栈。

  ? 第5行:标号__initial_sp,表示栈空间顶地址。

  ? 第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。

  ? 第7行:伪指令AREA

  ? 第8行:标号__heap_base,表示堆空间起始地址。

  ? 第9行:开辟一段大小为Heap_Size的内存空间作为堆。

  ? 第10行:标号__heap_limit,表示堆空间结束地址。

  ? 第11行:告诉编译器使用THUMB指令集。

  ? 第12行:告诉编译器以8字节对齐。

  ? 第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。

  ? 第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)

  ? 第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。

  ? 第84行:标号__Vectors,表示中断向量表入口地址。

  ? 第85—160行:建立中断向量表。

  ? 第161行:

  ? 第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。

  ? 第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。

  ? 第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。

  ? 第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。

  ? 第202行:声明__main标号。

  ? 第203—204行:跳转__main地址执行。

  ? 第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。

  ? 第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。

  ? 第212行:定义全局标号__use_two_region_memory。

  ? 第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。

  ? 第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。

  ? 第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。

  ? 第224行:程序完毕。

  以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:

  1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中 “READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而 “READONLY”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量 Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。

  2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。

  3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。

  4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转 __user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C 程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开发源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。

  至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转¬¬C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的 main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。

关键字:STM32  启动过程  SRAM 引用地址:专家揭秘:STM32启动过程全解

上一篇:基于ARM/FPGA的高速多通道同步数据采集解决方案
下一篇:基于嵌入式Linux的视频采集编码系统实现

推荐阅读最新更新时间:2024-03-16 13:38

STM32之AHB与APB总线
AHB是高速总线,是一种系统总线,它主要负责连接处理器、DMA等一些内部接口。AHB 系统由主模块、从模块和基础结构3部分组成,整个AHB总线上的传输都由主模块发出,由从模块负责回应。 APB是低速总线,它主要负责连接外围设备,它又分为APB1和APB2,它的总线架构不像 AHB支持多个主模块,在APB里面唯一的主模块就是APB 桥。APB桥就是连接AHB和APB中间的玩意。 APB1最大时钟频率为36MHz APB2最大时钟频率为72MHz 看下图 在STM32F1中,不同的外设接在不同的APB总线上,以下是详细的分布: #define RCC_APB1Periph_TIM2 ((ui
[单片机]
<font color='red'>STM32</font>之AHB与APB总线
赛普拉斯新推出三款异步SRAM 产品
日前,赛普拉斯半导体公司宣布推出了一款低功耗 SRAM 和两款快速异步 SRAM,进一步丰富了其业界领先的产品系列。新型的 64 兆比特 (Mbit) MoBL® (More Battery Life™) SRAM 是市场上密度最大的低功耗 SRAM,旨在延长高端销售点终端、游戏应用、VoIP 电话、手持消费和医疗设备等应用的电池工作时间。新推出的 3 兆比特和6兆比特快速异步 SRAM 与 24 位宽的处理器相连接,能充分满足音频处理、无线和网络等应用的需求。 赛普拉斯是快速异步和低功耗 SRAM 领域的业界领先企业,旗下的产品系列从 4 千比特 (Kbits)至 32 兆比特以及 64 千比特至64兆比特等应有尽有。CY6218
[电源管理]
使用STM32调试FMSDR模块及解调FM电台(2)
2. 调试整体思路 当我们使用FPGA或者STM32模块配合FMSDR模块使用的时候,需要从零开始调试这个电路,逐步完成:硬件好坏判断、8027和MSI001寄存器控制、波形采集、FM解调、滤波器设计和声音回放,这需要我们有一个清晰的调试思路:使用已知来调试未知。 很多同学一上来就调试MSI001收电台,几乎都收到的都是杂音,看到毫无规律的IQ信号无从下手,因为这里可能出错的地方很多:SPI时序错误,寄存器配置错误,ADC配置错误,解调算法错误,滤波算法错误,抽取算法错误,DAC程序错误等等,任意一步出问题都会导致最终结果不对。 更难受的是,即使是正常解调的电台,无论是IQ波形,解调后波形,还是滤波后波形,都是杂乱无章的(如下图)
[单片机]
使用<font color='red'>STM32</font>调试FMSDR模块及解调FM电台(2)
STM32供电方案一览
了解电源之前,先来简单了解一下各种电源端口的命名 VCC:C=circuit 表示电路的意思, 即接入电路的电压。 VDD:D=device 表示器件的意思, 即器件内部的工作电压。 VSS:S=series 表示公共连接的意思,通常指电路公共接地端电压。 GND:在电路里常被定为电压参考基点。 VEE:负电压供电;场效应管的源极(S) VPP:编程/擦除电压。 V*与V*A的区别是:数字与模拟的区别 数字电路供电VCC 模拟电路供电VCCA STM32供电方案一览 STM32的电源框图如下所示,电源供电共分为4个区域: VDD、VSS供电区域; VDDA、VSSA供电区域; 1.8V供电区域; 后备电源(VBAT)供电区域;
[单片机]
<font color='red'>STM32</font>供电方案一览
基于FPGA和SRAM的数控振荡器的设计与实现
1 引言   数控振荡器是数字通信中调制解调单元必不可少的部分,同时也是各种数字频率合成器和数字信号发生器的核心。随着数字通信技术的发展。对传送数据的精度和速率要求越来越高。如何得到可数控的高精度的高频载波信号是实现高速数字通信系统必须解决的问题。可编程逻辑器件和大容量存储器的发展为这一问题的解决带来了曙光。本文介绍如何用FPGA(现场可编程逻辑门阵列)和SRAM(静态随机存储器)实现高精度数控振荡器。 2 NCO概述    NCO(Numerical Controlled Oscillator)即数控振荡器用于产生可控的正弦波或余弦波。其实现的方法目前主要有计算法和查表法等。计算法以软件编程的方式通过实时计算产生正弦波样本.该
[应用]
stm32初始化流程图解析
  STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。   stm32参数:   12V-36V供电   兼容5V的I/O管脚   优异的安全时钟模式   带唤醒功能的低功耗模式   内部RC振荡器   内嵌复位电路   工作温度范围:-40°C至+85°C或105°C   stm32特点:   内核:ARM32位Cortex-M3 CPU,最高工作频率72MHz,1.25DMIPS/MHz。单周期乘法和硬件除法。   存储器:片上集成32-512KB的Flash存储器。6-64KB的SRAM存储器。时钟、复位和电源管理:2.0-3.6V的电源供电和I/O接口的驱动电压。上电
[单片机]
<font color='red'>stm32</font>初始化流程图解析
stm32---DS18b20
一个一线接口的温度传感器 DS18B20 发送所有的命令和数据都是字节的低位在前 每个器件都有自己的地址序列号 可以设置测量精度有四种,9---12位(0.5℃,0.25℃,0.125℃和 0.0625℃。),出场默认12位最高精度 高5位是0-- 温度大于0, 高5位是1-- 温度小于0 12位精度时,测量温度大于0,温度 = 测量数值 x 0.0625; 测量温度小于0, 温度 = (测量数值取反+1) x 0.0625 初始化时序 复位 : 引脚配置为输出模式。主机输出低电平 时间 480us ~ 960us,以产生复位脉冲后输出高电平线延时 15~60 us。 检查 :引脚配置为接收模式。接着 DS18B20 拉低
[单片机]
STM32 IIC OLED中英文显示
简介 ; II2C OLED 中英文显示 ADC数据采集实时显示 八路ADC 一 先上代码 #include oled.h #include sys.h #include delay.h #include oledfont.h #include delay.h #include bmp.h #include gbk.h #define uint unsigned int #define uchar unsigned char //OLED显存 u8 OLED_GRAM ; // 开始信号:SCLK为高电平 SDA由高电平跳变为低电平 开始传输数据 // 结束信号:SCLK为高电平 SDA由低电平跳变为高
[单片机]
<font color='red'>STM32</font> IIC OLED中英文显示
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • Linux内核移植
    实验步骤:(1)准备工作(2)修改顶层Makefile(3)修改falsh 分区(4)配置编译内核下面以Linux2 6 30 4内核移植到gec2440为例:一、准备 ...
  • S5PV210 PWM定时器
    第一节 S5PV210的PWM定时器S5PV210共有5个32bit的PWM定时器,其中定时器0、1、2、3有PWM功能,定时器4没有输出引脚。PWM定时器使用PCLK_PS ...
  • S5PV210 NAND Flash
    NAND Flash关于NAND FlashS5PV210的NAND Flash控制器有如下特点:1) 支持512byte,2k,4k,8k的页大小2) 通过各种软件模式来进行NAND Fl ...
  • S5PV210串口
    串口设置之输入输出字符S5PV210 UART相关说明 通用异步收发器简称UART,即UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER,它用来 ...
  • S5PV210按键控制LED
    原理图如图所示:查询用户手册得到:程序例子:(完整代码见“代码下载链接”)1、轮询的方式查询按键事件 *main c* 核心代码如下:while(1 ...
  • S5PV210控制蜂鸣器
  • S5PV210的启动过程
  • S5PV210点亮LED
  • S5PV210启动过程详解
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved