CPU散热器的电磁辐射仿真分析

发布者:心灵飞翔最新更新时间:2014-10-13 来源: eefocus关键字:CPU  散热器  电磁辐射 手机看文章 扫描二维码
随时随地手机看文章

随着集成电路技术的高速发展,现代集成芯片的晶体管集成度和工作频率获得了较大提高,例如Intel处理器在一个内核中集成了上亿个晶体管,且工作频率已经超过2 GHz。目前,在器件水平上,CPU散热器的辐射发射已经成为一个主要的电磁辐射源。散热器上的能量主要由处理器里的硅核强耦合而来,另外还有散热器附近电路线的耦合。在GHz范围内,硅核的尺寸远小于时钟信号频率及其谐波的波长,所以硅核自身辐射很小,可忽略。但当能量耦合到散热器上情况就不同了,在这些频率上,散热器的尺寸相比于波长不能忽略。当散热器的固有频率接近于CPU的时钟信号频率时,散热器就表现出强辐射,很容易对周围环境产生电磁干扰,为了减少由此带来的干扰,必须要研究散热器的谐振特性及辐射特性。虽然无法精确模拟硅核中的电路以求解精确结果,但散热器的电磁特性随其相关参数(底面尺寸、鳍取向及高度)的变化趋势也非常重要。本文详细研究了散热器的底面尺寸长宽比、鳍的取向及高度对第一谐振频率(文中分析的均为第一谐振频率,以下简称谐振频率),及谐振频率点处电场增益及辐射方向的影响。通过研究,找出一般规律,为散热器的设计及选取提供依据。

  
1 数值模型建立

  在EMC标准问题的研究中,CPU散热器问题是电磁兼容的主要问题之一。对于传统CPU散热器的建模,通常把散热器分解成3个部分:接地面、激励源和散热器。从实际集成电路的电磁特性来看,可以将CPU核的电磁特性模拟为一个导体贴片。Brench认为可以将散热器模拟为一个固体块以简化计算。Das和Roy通过实验结果得出结论,可以用单极子天线模拟激励源。

  与传统的处理器相比,P4处理器的结构和封装有所不同:在集成芯片的顶部集成了一个散热片,并且和芯片的封装绝缘。因此,P4处理器与传统处理器的散热器数值模型有所不同,在文献中,将两种模型进行了对比,文献已经提出了一个简易多层结构数值模型。本文在P4多层简易数值模型的基础上,建立更加真实的鳍状散热器,如图1和图2所示。图2中由下向上,依次为接地板(Ground)、贴片(Patch)、介质(Substrate)、集成散热片(IHS)、散热器(HS)。在此模型基础上,详细分析了以下两点:(1)散热器底面长宽比的变化对谐振频点、谐振频率处电场增益及辐射方向的影响;(2)鳍的取向及高度变化对谐振频率、谐振频率处电场增益和辐射方向的影响。图1和图2中各部分的材料如表l所示。


 

 

 

  
2 仿真分析

  首先,将散热器看作一个固体块,采用标准尺寸88.9 mm×63.5 mm×38.1 mm,建立模型,对频率1~6 GHz进行扫频,得出反射系数,如图3所示。对比图3与文献中图4的结果可以看出,在第一谐振点基本一致,在低频处仿真结果更加准确。

 

  2.1 散热器底面的长宽比对谐振频率、电场增益及辐射方向的影响

  将散热器底面的长边及高度固定,变化宽边,观察谐振频率的变化和谐振频率处电场增益、辐射方向的变化。设定散热器长边为88.9 mm,高度为38.1 mm,宽边从40 mm变化到95 mm,每增加5 mm计算一次,即底面长宽比由0.93变化到2.22,得到电场增益及谐振频率随底面长宽比的变化图,如图4所示。

 

  从图4中看出,(1)当长宽比>1.25时,谐振频率变化并不明显,保持在2.6~2.65 GHz。当长宽比减小时,谐振点将明显向低频偏移,例如,长宽比约为0.93时,谐振点已降到2.4 GHz。这是因为,当宽边<长边时,长边是优势尺寸,它决定了散热器谐振频率。当长边为88.9 mm时,它的谐振点在2.65 GHz左右,当宽边>88.9 mm后,此时宽边变为长边,成为优势尺寸,优势尺寸的变化主要影响了谐振点的变化。另外,在长宽比>1.65时,谐振频率有轻微下移;(2)当长宽比>1.3时,电场增益保持在8 dB以上,这个增益大于大多数无线通信系统中便携式器件的天线增益,散热器表现出天线效应。长宽比为1左右时,电场增益下降1 dB以上。另外,电场增益与谐振频率变化趋势基本一致。

  图5给出了3个不同宽边尺寸时,CPU散热器电场增益二维辐射图(3=0),可以看出,辐射方向在θ=30左右。图6(a)~图6(c)给出了随宽边尺寸的增加,CPU散热器3维辐射图的变化。图6(a)是宽边为40 mm时的辐射图;图6(b)是宽边为60 mm时的辐射图;图6(c)是宽边等于长边为88.9 mm时的辐射图。由图6(a)到图6(c)的变化,可以看出随着宽边尺寸的增加,辐射方向由xz面的两个辐射方向渐渐变化为xz面和yz面4个辐射方向,这是因为长边对谐振点是优势尺寸,它主要影响了在谐振点处散热器的辐射方向特性。当宽边小于长边时,长边决定辐射特性,此时有两个辐射方向,如图6(a)和图6(b)所示;当宽边接近长边时,宽边将和长边一起决定辐射特性,此时出现4个辐射方向,如图6(c)所示。[page]



        2.2 散热器的鳍取向及高度对谐振频率、电场增益及辐射方向影响

  这里,采用散热器的底面长宽为88.9 mm×63.5 mm。鳍厚度为2 mm,鳍间隔2 mm,散热器底部的高为5 mm。

  2.2.1 横向鳍的影响

  横向鳍,即鳍走向沿着x轴,以z轴对称两边各8个。当鳍的高度在0~60 mm时,间隔5 mm,进行仿真分析,得到谐振频率及此频率处电场的增益随鳍高度的变化曲线,如图7所示。从图7可以看出,鳍高度在0~60 mm变化时,谐振频率在2.5~2.65 GHz。随着鳍高度的增加,电场增益增大,当鳍高过20 mm后,电场辐射增益基本保持在8 dB左右。

 

  分别取鳍高为O mm,35 mm和55 mm时,由散热器的电场增益2D图看到,随着横向鳍高度的增加,在散热器底部产生了明显的辐射,并且其辐射方向随鳍高度的增加也在变化,如图8所示,但对其两个主要辐射方向影响不大。

 

  2.2.2 纵向鳍的影响

  纵向鳍,即鳍走向沿着y轴,以z轴对称两边各11个,鳍高度为0~50 mm变化,间隔5 mm进行仿真分析,得出第一谐振频率及此频率时电场增益随鳍高度的变化曲线,如图9所示。从图9中可以看出。纵向鳍的变化对谐振频率的影响较大,而且比较复杂,尤其是在鳍的高度<20 mm时,随着鳍高度的增加,第一谐振频率有350 MHz的漂移,在鳍高为20 mm时,出现了多个不同的谐振点。当鳍的高度>20 mm时,谐振频率基本保持在2.65~2.7 GHz。同时也观察到纵向鳍高度的变化对电场增益影响不大,其保持在8.0 dB,偏差0.4 dB左右。20 mm是个特殊点,此时仿真中出现3个接近的谐振点,只观察了谐振最强的2.7 GHz,所以得出较小的电场增益。

 

  分别取鳍高为0 mm,33.1 mm,50 mln时,由散热器的电场增益2D图看到,随着纵向鳍高度的增加,在散热器底部产生了明显的辐射,并且其辐射方向随鳍高度的增加也在变化,但对其两个主要辐射方向影响不大,如图10所示。

 

  由纵向鳍和横向鳍的仿真分析可以看出,总体上纵向鳍与横向鳍表现出几乎一致的效应,也就是说鳍的取向对散热器的辐射方向影响不大。但是纵向鳍高度的变化对谐振频率的影响还是很明显的,尤其当鳍的高度在20 mm以下变化时,谐振频率漂移很大。

  
3 结束语

  本文重点分析了两个因素对散热器谐振频率、谐振频率处的电场增益及辐射方向的影响,即散热器底面尺寸的长宽比、鳍取向和鳍高度变化。通过研究可以看出,散热器底面长宽比的变化对谐振频率有着明显的影响;鳍的取向和高度对谐振频率也有一定影响,随着鳍的变化,谐振频率有大约100 MHz的漂移,尤其对于纵向鳍,在其高度<20 mm时,影响更加明显;这3个因素对电场增益也有影响,但总体影响不大,基本保持在8.0 dB左右。但电场增益已经大于大多数无线通信系统中便携式器件的天线增益,使得散热器表现出明显的天线效应;另外可以看到散热器电场辐射有明显的方向性,但其也受到散热器底面尺寸及鳍高度的影响。由此,在设计或者选择散热器时,需要综合考虑这些因素,使得散热器的电磁辐射及干扰减到最小。

关键字:CPU  散热器  电磁辐射 引用地址:CPU散热器的电磁辐射仿真分析

上一篇:智能铅酸蓄电池充电器的设计与实现
下一篇:MCU低功耗的三种实现方法

推荐阅读最新更新时间:2024-03-16 13:42

详解Arm TCS23中的CPU集群
日前,Arm宣布推出2023 全面计算解决方案(TCS23),TCS23提供一整套针对特定工作负载而设计与优化的最新 IP,其中包括最新的CPU IP Cortex-X4、Cortex-A720和Cortex-A520,最新的GPU Immortalis-G720、 Mali-G720和Mali-G620,以及在安全领域的重要更新。 其中处理器IP是Arm IP生态系统中最重要的组成,因此Arm 终端事业部产品管理总监 Saurabh Pradhan、Arm 首席 CPU 架构师兼研究员 Ian Caulfield、Arm 首席 DSU 架构师兼研究员 Alex Waugh分别从Cortex-X4、Cortex-A系以及DSU
[半导体设计/制造]
详解Arm TCS23中的<font color='red'>CPU</font>集群
从苹果M1芯片看未来CPU架构
苹果发布了他们全新的MacBook系列产品。这不是一个普通的发布版本,如果说有什么不同的话,苹果今天所做的这一举动是15年来从未发生过的:开始了整个消费类Mac系列的CPU架构转型。 这个巨大的改变多亏了该公司在硬件和软件上的垂直整合,除了苹果公司,没有人能够如此迅速地引入。上一次苹果公司在2006年进行这样的尝试时,放弃了IBM的PowerPC ISA和处理器,转而支持英特尔x86设计。如今,英特尔正在被抛弃,苹果转而采用基于Arm-ISA的内部处理器和CPU微体系结构。 新处理器称为Apple M1,这是该公司首款针对Mac设计的SoC。它具有四个大型性能内核,四个效率内核和一个8-GPU内核GPU,在5nm工艺节点
[嵌入式]
从苹果M1芯片看未来<font color='red'>CPU</font>架构
以MSP430低功耗单片机为CPU的太阳能警报器系统设计
引言 我国是世界上受自然灾害影响最为严重的国家之一,近年来由于滥砍滥伐严重,自然资源过度开采,造成地质灾害和自然灾害发生的频率增多,破坏程度也越来越严重,2008年的四川汶川大地震、2010年的贵州玉树地震都造成了严重的人员死亡和经济损失,还有各地频发的各种泥石流、山体滑坡和水灾等都造成了不同程度的破坏,随时威胁着人民的生命财产安全。每年国家在防灾、抗灾和救灾方面都要花费大量的人力物力。如果能在灾害监测和预警方面下大力气,做到准确预测灾害的来临,灾前做好充分的准备工作,可以将灾害所造成的人员伤亡和经济损失减到最低,也为国家节省大量的救灾资金。 太阳能防空防灾电声警报器为各自独立的功能部件用积木形式集成安装在可移动的防水机箱内外
[单片机]
以MSP430低功耗单片机为<font color='red'>CPU</font>的太阳能警报器系统设计
利用MODBUS提高多CPU系统协同开发的效率
    摘要: 提出利用MODBUS协议实现多CPU系统中信息交互的方案,分析了软硬件通信机制的设计和系统协同开发的方法,以及各种提高通信效率的措施。     关键词: MODBUS通信协议 多CPU系统 通信 在电力系统微机综合保护和自控装置以及其它工业自动化控制领域,微控制器的应用越来越广泛,其装置的复杂性也越来越高。为了解决其开发对象实时多任务性的要求,单CPU、单入开发的模式下在被多个、多类型CPU和多人协同开发的模式所代替。在这新的开发模式中,面临一个新问题——在实施信息交互的过程中如何将实现CPU之间信息交互的软硬件标准化,这是关系到该模式能否成功实施的关键。在众多的通信方式中,基于UART的RS
[应用]
混搭出奇迹,自动驾驶AI芯片上演架构之争
经历了2016—2019年的野蛮生长期,2019的洗牌期,自动驾驶走入了发展新阶段。谷歌Waymo、百度Apollo、特斯拉、英伟达、Mobileye等行业领先企业技术不断迭代,场景化应用落地加速,为此,《中国电子报》推出“驶向自动驾驶新纪元”系列报道,通过梳理自动驾驶技术升级、厂商布局、产业发展等,描摹自动驾驶产业新面貌。 AI芯片很热,自动驾驶AI芯片更热。英伟达、英特尔、特斯拉、高通、地平线、黑芝麻智能等国内外传统芯片厂、新锐企业纷纷涌入车载AI芯片市场。如今,L2+ADAS自动驾驶商业变现风头正劲,L4高级别自动驾驶落地路线也越来越清晰,毫无疑问,自动驾驶正成为头部芯片企业争相抢占的高地。 从各大厂商的产品路线来看
[嵌入式]
绝对碾压,NVIDIA A100 GPU推理性能超CPU237倍
MLPerf组织发布最新的推理基准测试(Benchmark)MLPerf Inference v0.7结果,总共有23个组织提交了结果,相比上一个版本(MLPerf Inference v0.5)的12个提交者增加了近一倍。 结果显示,今年5月NVIDIA(Nvidia)发布的安培(Ampere)架构A100 Tensor Core GPU,在云端推理的基准测试性能是最先进Intel CPU的237倍。 MLPerf Inference V0.7部分结果截图 最新的AI推理测试结果意味着,NVIDIA未来可能在AI推理和训练市场都占据领导地位,给云端AI推理市场拥有优势的Intel带来更大压力的同时,也
[嵌入式]
绝对碾压,NVIDIA A100 GPU推理性能超<font color='red'>CPU</font>237倍
为什么时钟失效后CPU还在运行
问题: 该问题由某客户提出,发生在 STM32F103VDT6 器件上。据其工程师讲述:在其产品的设计中,STM32 的 HSE 外接 8MHz 的晶体产生振荡,然后通过 STM32 内部的PLL 倍频到 72MHz,作为 STM32 的系统时钟,驱动芯片工作。在 STM32 片外有专用的看门狗芯片,监控 STM32 的运行。STM32 内部的软件会在 STM32 的某个管脚上产生脉冲来复位看门狗。一旦 STM32 没有及时的产生脉冲来复位门狗,则看门狗会认为 STM32 运行不正常,从而复位 STM32。在对该产品做可靠性测试时,进行了对看门狗监控时钟失效能力的测试。测试的方法是:将 HSE 外接的晶体的两个端子接地,使其停止振
[单片机]
为什么时钟失效后<font color='red'>CPU</font>还在运行
ARM最强CPU/GPU来了!A75、G72首发
ARM在2017台北国际电脑展前夕, 正式宣布基于ARM DynamIQ技术的全新移动处理器——Cortex-A75、ARM Cortex-A55 CPU和ARM Mali-G72 GPU。 ARM介绍,三款新品旨在进一步加速提升人工智能体验。今年3月份,ARM针对人工智能推出DynamIQ技术,支持设备更加广泛,增强了机器学习,同时核心组合也更加灵活,比如1+3或者1+7的SoC配置。 从命名就能看出,顶级A75取代上一代旗舰A73、高效率的A55则取代A53。而Mali-G72则是G71的换代产品。 据了解, Cortex-A75和Cortex-A55的特性包括: 1、针对人工智能性能任务并基于DynamIQ技
[嵌入式]
ARM最强<font color='red'>CPU</font>/GPU来了!A75、G72首发
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved