基于微控制器的自由轴法RLC测量方法研究

发布者:明理厚德最新更新时间:2014-12-31 来源: eccn关键字:数字鉴相  自由轴法  RLD  测量 手机看文章 扫描二维码
随时随地手机看文章

0 引 言

R,L,C是电子电路及系统的主要元件,R,L,C参数的测量方法有电桥法、谐振法、伏安法。其中,电桥法具有较高的测量精度,但电路复杂且需要进行电桥平衡调节,不宜完成快速的自动测量。由于测量方法的制约,谐振法需要很高的频率激励信号,一般无法完成较高精度的测量。伏安法在设计中必须完成矢量测量及除法运算,为了实现高精度测量,还需要采用低失真的正弦波信号和高精度的A/D,早期实现比较困难。由于计算机技术的发展,智能仪器的计算能力和控制能力有了较大提高,使伏安法在实际中得到广泛应用。

伏安法测量中,有固定轴法和自由轴法两种,固定轴法要求相敏检波器的相位参考基准严格地与标准阻抗电压的相位相同,对硬件要求很高,并且存在同相误差,已很少使用。自由轴法中相敏检波器的相位参考基准可以任意选择,只要求保持两个坐标轴准确正交(相差90°),从而使硬件电路简化。常见的自由轴法RLC测试仪采用模拟相敏检波器,测量精度低,速度慢。本文介绍一种基于数字鉴相的自由轴法RLC测量电路设计。

1 系统组成及测量原理

基于数字鉴相的自由轴法RLC测量系统构成如图1所示,主要由正弦信号源U0、前端测量电路、相敏检波器、A/D转换器、微处理器、基准相位发生器以及键盘、显示电路等组成。



为了提高信号源精度,正弦信号源U0采用直接数字频率合成信号源(DDS)。R0为信号源内阻,RS是标准电阻,Zx为被测阻抗,A为高输入阻抗、高增益放大器,主要完成电流一电压变换功能。测量时,开关S通过程控置于Ux或US端。由图1有:UX=IOZX,US=-IORS,被测阻抗ZX为:



由式(1)可知,只要测出UX,US在直角坐标系中两坐标轴x,y上的投影分量,经过四则运算,即可求出测量结果。

图1中,被测信号与相位参考基准信号经过相敏检波器后,输出就是被测信号在坐标轴上的投影分量。相位参考基准代表着坐标轴的方向,为了得到每一被测电压(US或UX)在两坐标轴上的投影分量,基准相位发生器需要提供两个相位相差90°的相位参考基准信号。需要指出的是在自由轴法中,相位参考基准与US没有确定关系,可以任意选择,即x,y坐标轴可以任意选择,只需保持两坐标轴准确正交90°。UX,US和坐标轴的关系如图2所示。



应用图1测量时,通过开关S选择某一被测量(如UX),基准相位发生器依次送出两个相位相差90°的相位参考基准信号,经相敏检波器后分别得到UX在两坐标轴上的投影分量U1,U2。类似,当开关S选择US时,可分别得到US在两坐标轴上的投影分量U3,U4。各投影分量经A/D转换器可得对应的数字量,再经微处理器计算便得到被测元件参数值。

下面以电容并联电路的测量为例,推导RLC参数的数学模型。

由图2可得:



式中:Ni为Ui对应的数字量,e为A/D转换器的刻度系数,即每个数字所代表的电压值。

由式(2),式(3)可知:



直接通过对N1~N4数值的运算,即可完成矢量除法运算。

由式(1),式(4)可求得被测阻抗中的电容值CX及损耗角正切值DX。



式中:GX为介质损耗电导。

进而有:



同理可以导出被测参数R,C的计算公式。

2 正弦信号源与相敏检波器

在自由轴法测量RLC原理电路(图1)中,正弦信号发生器、相敏检波器及基准相位发生器是RLC测量仪的关键部分。[page]

2.1 正弦信号源

为了保证RLC测试仪的精度,要求信号源U0产生的正弦信号波形失真小,幅值稳定。自由轴法中,还要求信号源频率和相敏检波器相位基准信号的频率相同。所以正弦信号源与基准相位发生器在电路上密切相关。为了保证测试精度,采用直接数字频率合成DDS技术产生正弦信号激励源。DDS具有系统稳定性强,以及相位、频率精确可调的优点。图3所示为采用DDS的正弦信号源及相敏检波器原理图。



图3中时钟信号CLK经分频器后,得到依次二倍频率关系的8路信号,作为ROM1的地址输入,ROM1存放有256个按正弦规律变化的数据,即每一个存储单元存储的样点数据与其地址之间的关系和正弦波的幅值与时间轴的关系一致。在分频器输出8路信号作用下,ROM1依次输出正弦曲线样点数据,经D/A转换器后输出阶梯正弦波,再经滤波、放大,就得到了测试用的正弦激励信号。信号基础频率由单片机的P1.2和P1.3控制,若P1.2,P1.3分别为00,10,01,则基础频率厂依次为100 Hz,1 kHz,10 kHz。

2.2 基准相位发生器

基准相位发生器由ROM2实现,ROM2的高两位地址A9,A8由单片机的P1.1和P1.0提供,低8位地址A7~A0与ROM1地址对应相连。ROM2分为4个区,每区有64个数据,分别代表了4组相差90°的正弦波信号值。由P1.0,P1.1选择不同的区域。当P1.1,P1.0分别为00,01,10,111,ROM2依次输出相位相差90°的正弦信号(相位参考基准信号)。

2.3 相敏检波器

相敏检波器由乘法型D/A转换器和低通滤波器构成。乘法型D/A转换器用于实现数字鉴相。ROM2输出的8位数字式基准正弦信号送到8位乘法型D/A转换器,与加至D/A转换器参考电压VREF端的被测电压UX(或US)相乘,再经低通滤波便得到被测信号UX(或US)在坐标轴上的投影分量。分析如下,先使P1.1,P1.0=00,设ROM2输出正弦信号为cos(ωt),被测信号UX=Umcos(ωt+ψ),经乘法型D/A后输出为:



再经低通滤波器后输出为Umcosψ,它是被测信号UX在x坐标轴上的投影。然后使P1.1,P1.0=01,实现90°移相操作,此时ROM2输出为cos(ωT+π/2),被测信号UX仍然为Umcos(ωt+ψ),D/A转换器输出为:



经低通滤波可以得到UX在y坐标轴上的投影分量Umsin ψ信号。

同理,可以得到US在x,y坐标轴上的投影分量。

3 结 语

本电路所采用的数字相敏检波器比传统的模拟相敏检波器具有无法比拟的优点。通过乘法型D/A转换器进行数字鉴相,减少了传统模拟鉴相器开关动作过程中出现的尖脉冲,提高了测量精度;两个相互垂直的相位参考基准信号通过ROM2准确获得,相位参考基准信号电路比模拟相敏检波器大大简化;此外鉴相器使用D/A转换器后电路的温度系数进一步减小。

关键字:数字鉴相  自由轴法  RLD  测量 引用地址:基于微控制器的自由轴法RLC测量方法研究

上一篇:Cortex-M0 看门狗程序详解
下一篇:实现LED点阵左右移动的程序

推荐阅读最新更新时间:2024-03-16 13:50

激光测距传感器的测量方法有哪些
    在日常工作当中,人们对了解传感器的测量方法都不是很全面,那么传感器的测量手法有哪些?下面我跟大家讲解一下传感器测量方法,就是传感器测量时所采取的具体方法。   测量方法对检测系统是十分重要的,它直接关系到检测任务是否能够顺利完成。因此需针对不同的检测目的和具体情况进行分析,然后找出切实可行的测量方法,再根据测量方法选择合适的检测技术工具,组成一个完整的检测系统,进行实际测量。对于测量方法,从不同的角度出发,可有不同的分类方法。   根据测量手段分类,有:直接测量、间接测量和组合测量;根据测量方式分类,有:偏差式测量、零位式测量和微差式测量;根据测量的精度分类,有:等精度测量和非等精度测量;   根据被测量变化情
[测试测量]
动平衡测量仪的主要功能介绍
  动平衡测量仪采用大规模集成电路和单片机技术。该仪器操作简单,人机对话。菜单提示,配蓄电池和市电双重供电,很方便地用于现场汽轮机、水轮机、农业机器、离心机、风机、水泵等旋转机械动平衡的测量及动平衡的纠正。也可以与平衡机配套,直接替代平衡机电箱,用于老平衡机的改造。是厂矿企业、技术鉴定部门检测动平衡的专用工具。特别在旋转机械动平衡检测方面,只需按一下按键,便知被检测的机械总振动值是多少及由于旋转部份产生不平衡量是多少,一目了然便知该产品是否合格。   主要功能:   ●动平衡测量仪具有多功能性,既可作转速表用,又可作振动测量用,特别是具有动平衡测量的一切功能。(不平衡振动量及相位即时显示)   ●动平衡测量仪具有自动用试重法测量
[测试测量]
第三家安捷伦科技电子测量仪器体验店于深圳成立
2011 年 10月 9 日,北京――为了给中国客户提供更佳的服务,满足客户的采购需求,安捷伦科技有限公司与安捷伦工业电子测量仪器(IET)授权分销商-深圳云帆兴烨科技有限公司共同合作,于2011年9月14日设立了安捷伦科技电子测量仪器深圳体验店并进行了开业剪彩仪式。 通过安捷伦科技电子测量仪器体验店的成立,安捷伦及其授权的分销商可以为中国客户提供更为快捷、更为便利、更为专业的产品展示、演示与采购服务,并让客户可以透过拜访安捷伦科技电子测量产品体验店,立即亲身体验安捷伦产品的创新性、便携性,高质量和优异性价比。除了深圳体验店外,安捷伦还分别于北京、上海设立了体验店。 安捷伦科技电子测量仪器体验店内, 主要展示产品项目有工业
[测试测量]
用于测量电缆和天线的便携式分析仪
使愈来愈多的无线通讯应用可以覆盖更多的城市和郊区,基站(BTS)数量在不断增加。这些无线基础设施依赖于许多线缆,或者更准确地说,依赖许多电缆和天线来 进行工作。大量的基站需要定期维护,如果基站出了问题,还要加以排除和修复。为维护无线网络,必须定期测试电缆和天线,并确保天馈线系统的可靠度,以提高 语音和数据通讯的质量、降低断话率、降低断线率。因此,高效率又有效的天馈线测试分析仪已成为网络工程师和技术人员在架设和维护这类无线网络时,不可或缺 的基本测试工具。 新型的Agilent N9330A电缆和天线测试仪是完成这项工作的理想工具。该测试仪是采用电池供电的单口网络分析仪,频率范围为覆盖许多无线系统的25MHz~4GHz。 Agilen
[测试测量]
基于超声波传感器的车钩高度测量系统
1. 引言 货车、客车车辆在补修、段修和厂修时必须检测车钩到轨道的垂直距离,为了便于连挂和行车安全必须规定车钩高度(车钩中心线到铁轨上表面的垂直距离)在一定的范围内[1 (客车:880mm,允许+10mm,-5mm 的误差;货车:880mm, 10mm 的误差)。车辆在进行段修时,由于要对转向架、车钩若测量不准,将严重影响列车的行车安全。而目前我国铁路各车辆段均采用比较原始的手工测量方法,误差大,效率低,费时又费力,无法满足铁路列车高速重载的发展要求 [2 。针对以上问题,本文阐述了车钩高度超声波测量系统的功能原理及软硬件设计。 2. 工作原理 测量系统采用超声波传感器,自车钩中心线向下竖直发射超声波,并由放置在铁轨面的的薄
[测试测量]
基于超声波传感器的车钩高度<font color='red'>测量</font>系统
精确测量微小信号
一般来讲,当用示波器在低于10 mV/div的档位进行测量时,通常会通过限制测量带宽的方法将噪声 尽可能地压低。而R&S RTO却不同:它甚至可以在最敏感的小信号档位提供全带宽,并且用超过 7位有效位的 A/D 转换器来进行信号量化。 图 1:R&S RTO 示波器甚至在垂直方向灵敏度达 1 mV/div 情况下也可提 供全带宽测量。 1 您的任务 移动设备在变得越来越小的同时功能却越来越多,客户还期望电池使用时间能更长一点。降低耗电量是此类装置设计中面临的最大考验。尽量保持低压供电,以便在高速数据传输情况下将耗电量降至最小。因此设计中大量采用了低摆幅信号与低压差分信号 (LVDS) 。低摆幅度信号在模拟和混合电路中
[测试测量]
精确<font color='red'>测量</font>微小信号
如何用示波器正确地测量开关电源
一、 首先要搞明白示波器地线与市电的零线、火线还有大地间的关系 下图表现出火线、零线和地线的关系: 火线(L):也称相线,由发电站或变电站提供,电压220V,人体接触会有危险; 零线(N):为火线提供回路,在发电站或变电站端接地;由于是远端接地,因此在居民楼用户端电位不一定为零,可能带弱电,但相对安全; 地线(E):零电势参考点,在居民楼用户端接大地,零电压,绝对安全。 而示波器没有与市电隔离,使用三脚插头,探头的地是与示波器的电源地相连的。 二、实例分析 以测量反激开关电源时原边MOS的D极波形为例。假如没有使用隔离电源和两脚插(不带地线的),直接测会出现炸机情况。 如下图所示,因为示波器探头的地和电源线的地线是短接在一
[测试测量]
如何用示波器正确地<font color='red'>测量</font>开关电源
基于AD8302芯片的新的幅测量系统
引 言 传统的幅度、相位差、阻抗测量需要采用多个中小规模集成电路,不仅电路复杂,测量精度低,而且适用的频率范围窄,只能测量低频或中频信号。本文介绍利用美国ADI公司最近推出的AD8302芯片测量RF/IF幅度和相位差并计算阻抗。此芯片是测量幅度、相位差的首款单片集成电路,可广泛用于GSM(全球移动通信系统),电力系统的阻波器、结合滤波器等领域。 1 AD8302性能特点 AD8302内含两个精密匹配宽带对数检波器、一个相位检波器、输出放大器组、一个偏置单元和一个输出参考电压缓冲器等,能同时测量从低频到2.7 GHz频率范围内的两个输入信号之间的幅度比和相位差。该器件将精密匹配的两个对数检波器集成在一块芯片上,因而可将误差源及
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved