低功耗MSP430单片机 在3V与5V混合系统中的逻辑接口技术

发布者:SereneDreamer最新更新时间:2015-01-23 来源: laogu关键字:MSP430  单片机  混合系统  逻辑接口 手机看文章 扫描二维码
随时随地手机看文章

MSP430超低功耗微处理器是TI公司推出的一种新型单片机。它具有16位精简指令结构,内含12位快速ADC/Slope ADC,内含60K字节FLASH ROM,2K字节RAM,片内资源丰富,有ADC、PWM、若干TIME、串行口、WATCHDOG、比较器、模拟信号,有多种省电模式,功耗特别小,一颗电池可工作10年。开发简单,仿真器价格低廉,不需昂贵的编程器。

    MSP430其特点有:1.8V~3.6V低电压供电;高效16位RISC CPU可以确保任务的快速执行,缩短了工作时间,大多数指令可以在一个时钟周期里完成;6微秒的快速启动时间可以延长待机时间并使启动更加迅速,降低了电池的功耗。MSP430产品系列可以提供多种存储器选择,简化了各类应用中MSP430的设计;ESD保护,抗干扰力特强。与其它微控制器相比,带Flash的微控制器可以将功耗降低为原来1/5,既缩小了线路板空间又降低了系统成本。

MSP430具有如此多的优点,可以预测在今后会有广泛的应用。但是目前仍有许多5V电池的逻辑器件和数字器件在使用,因此在许多设计中3V(含3.3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在同一电路板中混用。随着更低电压标准的引进,不同电源电压逻辑器件间的接口问题会在很长一段时间内存在。本文讨论MSP430与单片机中最常用的LSTTL电路、CMOS电路及计算机HCMOS电路的3V和5V系统中逻辑器件间的接口方法。理解这些方法可避免不同电压的逻辑器件接口时出现问题,保证所设计的电路数据传输的可靠性。

1 逻辑电平不同,接口时出现的问题

在混合电压系统中,不同电源电压的逻辑器件相互接口时会存在三个主要问题:第一是加到输入和输出引脚上的最大允许电压的限制问题;第二是两个电源间电流的互串问题;第三是必须满足的输入转换门限电平问题。器件对加到输入脚或输出脚的电压通常是有限制的。这些引脚有二极管或分离元件接到Vcc。如果接入的电压过高,电流将会通过二极管或分离元件流向电源。例如3V器件的输入端接上5V信号,则5V电源将会向3V电源充电,持续的电流将会损坏二极管和电路元件。在等待或掉电方式时,3V电源降落到0V,大电流将流到地,这使总线上的高电平电压被下拉到地。这些情况将引起数据丢失和元件损坏。必须注意的:不管是在3V的工作状态或是0V的等状态都不允许电流直接流向Vcc。另外用5V的器件来驱动3V的器件有很多不同情况,各种电路间的转换电平也存在不同情况。驱动器必须满足接收器的输入转换电平,并要有足够的容限保证不损坏电路元件。

2 可用5V容限输入的3V逻辑器件

3V的逻辑器件可以有5V输入容限的器件有LVC、LVT、ALVT、LCX、LVX、LPT和FCT3等系列。此外,还有不带总线保持输入的飞利浦ALVC也是5V容限。[page]

2.1 ESD保护电路

3V器件可以有5V的输入容限。一般数字电路的输入端都有一个静电放电(ESD)保护电路。如图1(a)所示,传统的CMOS电路通过接地的二极管D1、D2对负向高电压限幅实现保护,正向高是则由二极管D3箝位。这种电路为了防止电流流向Vcc电源,最大输入电压被限制在Vcc+0.5V。对Vcc为3V的器件来说,当输入端直接与大多数5V器件输出端接口时允许的输入电压太低大多数3V系统加到输入端的电压可达3.6V以上。有些3V系统可以使用两个MOS场效应管或晶体管T1、T2代替二极管D1、D2,如图1(b)所示。T1、T2的作用相当于快速剂纳二极管对高电压限幅。由于去掉了接到Vcc的二极管D3,因此最大输入电压不受Vcc的限制。典型情况下,这种电路的击穿电压在7~10V之间,因此可以适合任何5V系统的输入电压。

由上述分析可知,改进后具有ESD保护电路的3V系统的输入端可以与5V系统的输出端接口。

2.2 总线保护电路

总线保护电路就是有一个MOS场效应管用作上拉或下拉器件,在输入端浮空(高阻)的情况下保护输入端处于最后有效的逻辑电平。图2(a)中的电路为一LVC器件总线保护电路,采取改进措施而使其输入端具有5V的容限。其基本原理如下:P沟道MOS场效应管具有一个内在的寄生二极管,它连接在漏极和衬底之间,通常源极与衬底是连在一起的,这就限制了输入电压不能高于Vcc+0.5V。现在的措施是用常闭接点S1将源极与衬底相连,当输入端电压比Vcc高0.5V时,比较器使S2闭合,S1断开,输入端电流不会通过二极管流向Vcc而使输入具有5V的容限。图2(b)是LVT和LAVT器件总线保持电路的例子。这种电路用了一个串联的肖特基二极管D,消除了从输入到Vcc的电流通路,从而可以承受5V输入电压。对于3V的总体保持LVC、LVT和ALVT系列器件可以承受5V的输入电压。但对于3V的ALVC、VCX等系列器件则不能,它们的输入电压被限制在Vcc+0.5V。

    图3是用于3V CMOS器件输出电路的简化形式。当输出端电压高于Vcc+0.5V(二极管压降)时,P沟道MOS场效应管的内部二极管会形成一条从输出端到Vcc的电流通路。这种电路在与5V器件相接时需要加保护电路。

图4是一种带保护电路的CMOS器件输出电路。当输出端电压高于Vcc时,比较器使S1开路,S2闭合,电流通路消失。这样在三态方式时就能与5V器件相接。

2.3 biCMOS输出电路

LVT和ALVT器件的biCMOS输出电路如图5所示。它用双极NPN晶体管和CMOS场效应管来获得输出电压摆幅达到电源电压的要求。电流不会通过NPN双极晶体管回流到Vcc,但在P沟道MOS场效应管中的内在二极管仍然会形成一条从输出端到Vcc的电流通路(为了简化,图5中没有画出该二极管)。因此这种电路不能接高于Vcc的电压。

    对图5电路所加的保护电路如图6所示。增加了反向偏置的肖特基二极管,用以防止电流从输出端流到Vcc。图6中的输出端与5V驱动器共用一条总线。在三态方式时,电路可以得到保护。当出现总线争夺即两个驱动器都以高电平驱动总线时,比较器将P沟道MOS场效应管断开。当3V器件处于等待方式而3V电源为0时,比较器和肖特基二极管可以起保护作用。[page]

3 接口电路的有关参数

了解了3V器件为什么具有5V容限后,在MSP430与LSTTL、HCMOS、CMOS电路实现相互联接之间,要先了解各种电路和器件的参数,如表1所示。

表1 各种电路和器件参数

        参数
 电路
电源电压范围 输入电平 输出电平
V(V) VIH(V) VIL(V) VOH(V) VOL(V)
LSTTL 4.5~5.5 2 0.8 2.7 0.4
CMOS 3~18(取Vcc=5) 3.5 1.5 4.5 0.5
HCMOS 2~6 3.5 1 5.2 0.4
MSP430 1.83.6 0.8Vcc 0.2Vcc Vcc-0.6 0.6
ALVT系列 3.3或2.5 1.7 0.8 2.0 0.2~0.55
LVC系列 1.65~5.5 0.7Vcc 0.3Vcc 2.7~5.5 0.1~0.55

4 接口实现

不同电源电压的逻辑器件相互接口时存在的主要问题是逻辑信号电平的配合问题,就是前级电路输出的电平要满足后级电路对输入电平的要求。此外还有负载电流的配合问题,即前级电路的输出电流应大于后级电路对输入电流的要求,同时不应造成器件损坏。还有就是在高速或有严重干扰的场合,必须考虑接口对系统和抗干扰性能带来的不良影响。这里主要讨论逻辑信号电平的配合问题。因为对于负载电流配合问题只是一个带负载能力。而抗干扰问题则用本文中提到的方法都可以忽略。

4.1 LSTTL-MSP430

如表1所示,LSTTL电路的高电平输出电压VOH约为2.7V,MSP430的高电平输入约为0.8VCC,LSTTL电路的低电平输出电压VOL约为0.4V,MSP430的低电平输入电压VIL的0.2VCC。如果0.8Vcc小于2.7V且0.2Vcc大于0.4V时,不存在逻辑信号电平的配合问题,可以直接连接。如果0.8Vcc大于2.7V或0.2Vcc小于0.4V时,就出现了逻辑信号电平的配合问题。为了增大LSTTL电路的输出高电平,利用TI公司的LVC系列。从表1中可以看到LVC系列产品的高电平输出电压和低电平输出电压都符合要求。

4.2 CMOS-MSP430

在接口时使CMOS和MSP430使用同一电源,例如3V电源可以直接驱动。如果实际情况不允许,则根据1表,通过ALVT系列的器件就可以实现CMOS驱动MSP430。

4.3 HCMOS-MSP430

同上述CMOS分析一样,同样选用ALVT来驱动MSP430。

4.4 MSP430驱动LSTTL、CMOS和HCMOS

MSP430的输出引脚(P0.x、P1.x、P2.x、P3.x、P4.x、Oy)都有规定的外接电阻。外接电阻的大小取决于电源电压Vcc的大小。如果输出电流比规定的要大,就需要输出驱动器。图7所示为限制MSP430输出电流的电阻最小值。设计以Vcc=3V,通过这些器件可以驱动需要大电流的LSTTL、HCMOS和CMOS电路接口。

5 两种电平移位器件

5.1 双电源电平移位器74LVC4245

74LC4245是一种双电源的电平移位器,如图8所示。5V端用5V电源作为Vcc(A),而3V端则用3V作为Vcc(B)。它的功能类似于常用的收发器74LVC245,所不同的是用两个电源而不是一个电源。74LVS4245的电平移位在其内部进行。双电源能保证两边端口的输出摆幅都能达到满电源幅值,并且有很好的噪声抑制性能。因此该器件用来驱动5V CMOS器件是很理想的。缺点是增加了功耗。

    5.2 74LVC07

较为简单的一种电平移位器件是74LVC07。它使用一个漏极开路缓冲器去驱动5V CMOS器件,如图9所示。它的输出端出一个上拉电阻R接到5V电源。

低功耗MSP430与LSTTL、HCMOS和CMOS器件共存于一个系统中,这种情况将在相当长的时间。在设计这种系统时要分析其中逻辑器件的接口问题,保证所设计的电路在不同电压器件间数据传输的可靠性。

关键字:MSP430  单片机  混合系统  逻辑接口 引用地址:低功耗MSP430单片机 在3V与5V混合系统中的逻辑接口技术

上一篇:MSP430寄存器中文注释---P3/4口 (无中断功能)
下一篇:平凡单片机教学——第十四讲 单片机指令(八)

推荐阅读最新更新时间:2024-03-16 13:52

基于AVR和FPGA数字式移相信号发生器的设计
1 引 言 移相信号发生器属于信号源的一个重要组成部分,但传统的模拟移相有许多不足,如移相输出波形易受输入波形的影响,移相角度与负载的大小和性质有关,移相精度不高,分辨率较低等。 而且,传统的模拟移相不能实现任意波形的移相,这主要是因为传统的模拟移相由移相电路的幅相特性所决定,对于方波、三角波、锯齿波等非正弦信号各次谐波的相移、幅值衰减不一致,从而导致输出波形发生畸变。目前利用DDS技术产生信号源的方法得到了广泛的应用,但是专用DDS芯片由于采用特定的集成工艺,内部数字信号抖动很小,不可以输出高质量的模拟信号。随着现代电子技术的发展,特别是随单片机和可编程技术的发展而兴起的数字移相技术却很好地解决了这一问题。在众多的单片机之中,
[单片机]
基于AVR和FPGA数字式移相信号发生器的设计
51单片机中WR和RD的使用
例如DAC0832,PDIUSBD12等芯片,都是并行传输的,且芯片上都的WR和RD脚。在使用这种芯片时可能把WR和RD接到51的普通IO口上,用普通IO口来模拟芯片的读写时序来进行对芯片的操作(有些单片机只能用此方法如AVR单片机);也可将WR,RD接到单片机的WR和RD上,这时相当于把外部的芯片当外部存储器用。用这种方法还是很方便的,只要定义好外部芯片的地址。直接对该地址读写就可以了。 下面拿51单片机和PDIUSBD12芯片的读写来说明: 硬件接口:51的数据口(P0)和PDIUSBD12的数据口相连;两个WR,RD,ALE对应相连;PDIUSBD12的CS和P2.7口相连。 程序如下: /*-------
[单片机]
OLED显示模块与C8051F单片机接口设计
摘要:OLED作为新一代显示技术,广泛用于各种仪器仪表的显示终端,实时显示字符、汉字、曲线等信息。文中介绍一种点阵式OLED模块VGS12864E的结构特征、指令系统;给出它与Cygnal C8051F020单片机的间接访问接口电路设计,以及显示模块的硬件驱动和显示16%26;#215;8点阵西文字符的Keil C51程序代码,并对相关代码进行注释。由于此款显示模块的指令系统与液晶显示驱动控制器HD61202兼容,故程序代码也可作为指令系统与它兼容的液晶显示编程的参考。 关键词:点阵显示模块 OLED C8051F 接口设计   有机发光显示OLED(Organic Light Emitting Display)是比液晶显示技术
[应用]
基于AT89S52单片机的测量模块电路设计
该测试仪以AT89S52单片机为核心,外接温湿度传感器SHTll、照度传感器TSL2561、四位共阴数码管、RS485总线通信接口以及显示切换按键。单片机上电工作后,对当前温度、湿度、光强度进行实时测量,通过按键切换将测得的3种参数通过LED数码管进行轮流显示;此外,还可以通过RS485总线与PC机进行通信,将参数值传送到上位机,以达到远程监测的目的。该测试仪的结构框图如图1所示。 测量模块电路 温度和湿度测量采用的是瑞士Sensirion公司生产的SHTll传感器。该传感器采用独特的CMOsens TM技术,将温湿度传感器、信号放大处理、A/D转换、I2C总线全部集成在一块芯片上,可直接与单片机接口。该芯片采用数字
[单片机]
基于AT89S52<font color='red'>单片机</font>的测量模块电路设计
使用8051单片机在LCD屏幕上显示内容的教程
液晶显示器(LCD)是一种常用的显示屏,在许多电子产品中经常使用它来以文本或图像格式显示信息。LCD用于在其屏幕上显示字母、数字等字符。LCD显示器由8条数据线和3条控制线组成,用于将LCD显示器与8051单片机连接。 考虑使用基于Proteus的模拟LCD与8051单片机的接口是: 如何在LCD显示屏上显示“8051单片机”,案例程序如下: #include reg51.h #define kam P0 void lcd_initi(); void lcd_dat(unsigned char ); void lcd_cmd(unsigned char ); void delay(); void di
[单片机]
使用8051<font color='red'>单片机</font>在LCD屏幕上显示内容的教程
四维图新发布国产第一颗32位Cortex-M0+车规级MCU芯片
近日, 四维图新 旗下全资子公司AutoChips杰发科技对外宣布,其车规级 MCU 产品线又添重量级新成员—— AC7801X ,这是杰发科技继2018年底量产的国内首颗车规级 MCU 芯片——AC7811之后, 国产第一颗32位Cortex-M0+车规级 MCU 芯片,进一步打破国外MCU品牌在车身控制领域的技术垄断,为国内汽车半导体行业树立新的标杆。 AC7801X 主要面向汽车车身电子,可广泛应用于天窗、车窗、座椅、LED车灯、ETC、倒车雷达、雨量传感器等产品领域,同时也可应用于高可靠性工业领域,如水泵、油泵、工业风机、电机控制等产品,支持最新最先进CAN-FD接口,具有丰富灵活的封装尺寸(48/32/20Pin),
[汽车电子]
基于STM32 MCU应用的EMC指南之软件篇
在基于微控制器的电子系统中,强壮的软件设计是提高 EMC 性能的主要因素。必须尽量在项目设计阶段的早期考虑 EMC 干扰导致的问题。EMC 导向的软件提高了应用的安全性和可靠性。强化 EMC 性能的软件的实施成本低,可提高最终的抗扰性能,并节约硬件和开发成本。用户应考虑到模拟或数字数据受到的 EMC 干扰,就像任何其它应用参数一样。 EMC 干扰导致的问题示例: 微控制器无响应 程序计数器失控 执行意外指令 地址指向错误 子程序执行错误 寄生复位和 / 或寄生中断 IP 配置损坏 I/O 失灵 软件故障的后果示例: 产品意外响应 上下文丢失 进程中的意外分支 中断丢失 数据完整性缺失 输入值误读 01使用看门狗或时间控制 为了
[单片机]
基于STM32 <font color='red'>MCU</font>应用的EMC指南之软件篇
51单片机总线与非总线的程序对比
#include reg52.h #include intrins.h #define uchar unsigned char #define uint unsigned int uchar code table = The distance is ; uchar code table1 = 00.0cm ; sbit shuru=P1^0; sbit yidianling=P1^0; sbit yidianyi=P1^3;//延时 void delay(uint z) { uint x,y; for(x=z;x 0;x--) for(y=110;y 0;y--); } //1602写地址 void wr
[单片机]
51<font color='red'>单片机</font>总线与非总线的程序对比
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved