STC89C52单片机驱动CC1101无线模块的接收C语言程序

发布者:HeavenlyMelody最新更新时间:2015-07-03 来源: 51hei关键字:STC89C52  单片机  CC1101  无线模块 手机看文章 扫描二维码
随时随地手机看文章
#include

#include 

#defineINT8Uunsigned char

#defineINT16Uunsigned int


#define WRITE_BURST     0x40//连续写入

#define READ_SINGLE     0x80//读

#define READ_BURST      0xC0//连续读

#define BYTES_IN_RXFIFO     0x7F  //接收缓冲区的有效字节数

#define CRC_OK              0x80 //CRC校验通过位标志

//************CC1100接口***************

sbit GDO0=P3^3;

sbit GDO2=P1^4;

sbitMISO=P1^2;

sbitMOSI=P1^1;

sbitSCK=P3^2;

sbitCSN=P1^3;


//sbit GDO0=P1^3;

//sbit GDO2=P1^2;

//sbitMISO=P1^4;

//sbitMOSI=P3^2;

//sbitSCK=P1^1;

//sbitCSN=P3^3;

//**************按键****************

sbit    KEY1    =P3^6;

sbit    KEY2    =P3^7;

//**********数码管位选**********

sbitled3=P2^0;

sbitled2=P2^1;

sbitled1=P2^2;

sbitled0=P2^3;

//**************蜂鸣器***********

sbit BELL=P3^4;

//*************数码管?****************

INT8U seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};         //0~~9段码

INT8U seg1[10]={0x40,0x4F,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};

//***************按键****************

INT8U data temp_data[2]={0x00,0x00};

INT8U dispaly[8], temp[6];

//更多功率参数设置可详细参考DATACC1100英文文档中第48-49页的参数表

//INT8U PaTabel[8] = {0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04};  //-30dBm   功率最小

INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};  //0dBm

//INT8U PaTabel[8] = {0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0};   //10dBm     功率最大

//****************************

void SpiInit(void);

void CpuInit(void);

void RESET_CC1100(void);

void POWER_UP_RESET_CC1100(void);

void halSpiWriteReg(INT8U addr, INT8U value);

void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);

void halSpiStrobe(INT8U strobe);

INT8U halSpiReadReg(INT8U addr);

void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);

INT8U halSpiReadStatus(INT8U addr);

void halRfWriteRfSettings(void);

void halRfSendPacket(INT8U *txBuffer, INT8U size);

INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);  

void StartUART( void );

void R_S_Byte(INT8U R_Byte);

//************************

// CC1100 STROBE, CONTROL AND STATUS REGSITER

#define CCxxx0_IOCFG2       0x00        // GDO2 output pin configuration

#define CCxxx0_IOCFG1       0x01        // GDO1 output pin configuration

#define CCxxx0_IOCFG0       0x02        // GDO0 output pin configuration

#define CCxxx0_FIFOTHR      0x03        // RX FIFO and TX FIFO thresholds

#define CCxxx0_SYNC1        0x04        // Sync word, high INT8U

#define CCxxx0_SYNC0        0x05        // Sync word, low INT8U

#define CCxxx0_PKTLEN       0x06        // Packet length

#define CCxxx0_PKTCTRL1     0x07        // Packet automation control

#define CCxxx0_PKTCTRL0     0x08        // Packet automation control

#define CCxxx0_ADDR         0x09        // Device address

#define CCxxx0_CHANNR       0x0A        // Channel number

#define CCxxx0_FSCTRL1      0x0B        // Frequency synthesizer control

#define CCxxx0_FSCTRL0      0x0C        // Frequency synthesizer control

#define CCxxx0_FREQ2        0x0D        // Frequency control word, high INT8U

#define CCxxx0_FREQ1        0x0E        // Frequency control word, middle INT8U

#define CCxxx0_FREQ0        0x0F        // Frequency control word, low INT8U

#define CCxxx0_MDMCFG4      0x10        // Modem configuration

#define CCxxx0_MDMCFG3      0x11        // Modem configuration

#define CCxxx0_MDMCFG2      0x12        // Modem configuration

#define CCxxx0_MDMCFG1      0x13        // Modem configuration

#define CCxxx0_MDMCFG0      0x14        // Modem configuration

#define CCxxx0_DEVIATN      0x15        // Modem deviation setting

#define CCxxx0_MCSM2        0x16        // Main Radio Control State Machine configuration

#define CCxxx0_MCSM1        0x17        // Main Radio Control State Machine configuration

#define CCxxx0_MCSM0        0x18        // Main Radio Control State Machine configuration

#define CCxxx0_FOCCFG       0x19        // Frequency Offset Compensation configuration

#define CCxxx0_BSCFG        0x1A        // Bit Synchronization configuration

#define CCxxx0_AGCCTRL2     0x1B        // AGC control

#define CCxxx0_AGCCTRL1     0x1C        // AGC control

#define CCxxx0_AGCCTRL0     0x1D        // AGC control

#define CCxxx0_WOREVT1      0x1E        // High INT8U Event 0 timeout

#define CCxxx0_WOREVT0      0x1F        // Low INT8U Event 0 timeout

#define CCxxx0_WORCTRL      0x20        // Wake On Radio control

#define CCxxx0_FREND1       0x21        // Front end RX configuration

#define CCxxx0_FREND0       0x22        // Front end TX configuration

#define CCxxx0_FSCAL3       0x23        // Frequency synthesizer calibration

#define CCxxx0_FSCAL2       0x24        // Frequency synthesizer calibration

#define CCxxx0_FSCAL1       0x25        // Frequency synthesizer calibration

#define CCxxx0_FSCAL0       0x26        // Frequency synthesizer calibration

#define CCxxx0_RCCTRL1      0x27        // RC oscillator configuration

#define CCxxx0_RCCTRL0      0x28        // RC oscillator configuration

#define CCxxx0_FSTEST       0x29        // Frequency synthesizer calibration control

#define CCxxx0_PTEST        0x2A        // Production test

#define CCxxx0_AGCTEST      0x2B        // AGC test

#define CCxxx0_TEST2        0x2C        // Various test settings

#define CCxxx0_TEST1        0x2D        // Various test settings

#define CCxxx0_TEST0        0x2E        // Various test settings


// Strobe commands

#define CCxxx0_SRES         0x30        // Reset chip.

#define CCxxx0_SFSTXON      0x31        // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).

                                       // If in RX/TX: Go to a wait state where only the synthesizer is

                                       // running (for quick RX / TX turnaround).

#define CCxxx0_SXOFF        0x32        // Turn off crystal oscillator.

#define CCxxx0_SCAL         0x33        // Calibrate frequency synthesizer and turn it off

                                       // (enables quick start).

#define CCxxx0_SRX          0x34        // Enable RX. Perform calibration first if coming from IDLE and

                                       // MCSM0.FS_AUTOCAL=1.

#define CCxxx0_STX          0x35        // In IDLE state: Enable TX. Perform calibration first if

                                       // MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:

                                       // Only go to TX if channel is clear.

#define CCxxx0_SIDLE        0x36        // Exit RX / TX, turn off frequency synthesizer and exit

                                       // Wake-On-Radio mode if applicable.

#define CCxxx0_SAFC         0x37        // Perform AFC adjustment of the frequency synthesizer

#define CCxxx0_SWOR         0x38        // Start automatic RX polling sequence (Wake-on-Radio)

#define CCxxx0_SPWD         0x39        // Enter power down mode when CSn goes high.

#define CCxxx0_SFRX         0x3A        // Flush the RX FIFO buffer.

#define CCxxx0_SFTX         0x3B        // Flush the TX FIFO buffer.

#define CCxxx0_SWORRST      0x3C        // Reset real time clock.

#define CCxxx0_SNOP         0x3D        // No operation. May be used to pad strobe commands to two

                                       // INT8Us for simpler software.


#define CCxxx0_PARTNUM      0x30

#define CCxxx0_VERSION      0x31

#define CCxxx0_FREQEST      0x32

#define CCxxx0_LQI          0x33

#define CCxxx0_RSSI         0x34

#define CCxxx0_MARCSTATE    0x35

#define CCxxx0_WORTIME1     0x36

#define CCxxx0_WORTIME0     0x37

#define CCxxx0_PKTSTATUS    0x38

#define CCxxx0_VCO_VC_DAC   0x39

#define CCxxx0_TXBYTES      0x3A

#define CCxxx0_RXBYTES      0x3B


#define CCxxx0_PATABLE      0x3E

#define CCxxx0_TXFIFO       0x3F

#define CCxxx0_RXFIFO       0x3F


// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers

typedef struct S_RF_SETTINGS

{

INT8U FSCTRL2;

   INT8U FSCTRL1;   // Frequency synthesizer control.

   INT8U FSCTRL0;   // Frequency synthesizer control.

   INT8U FREQ2;     // Frequency control word, high INT8U.

   INT8U FREQ1;     // Frequency control word, middle INT8U.

   INT8U FREQ0;     // Frequency control word, low INT8U.

   INT8U MDMCFG4;   // Modem configuration.

   INT8U MDMCFG3;   // Modem configuration.

   INT8U MDMCFG2;   // Modem configuration.

   INT8U MDMCFG1;   // Modem configuration.

   INT8U MDMCFG0;   // Modem configuration.

   INT8U CHANNR;    // Channel number.

   INT8U DEVIATN;   // Modem deviation setting (when FSK modulation is enabled).

   INT8U FREND1;    // Front end RX configuration.

   INT8U FREND0;    // Front end RX configuration.

   INT8U MCSM0;     // Main Radio Control State Machine configuration.

   INT8U FOCCFG;    // Frequency Offset Compensation Configuration.

   INT8U BSCFG;     // Bit synchronization Configuration.

   INT8U AGCCTRL2;  // AGC control.

INT8U AGCCTRL1;  // AGC control.

   INT8U AGCCTRL0;  // AGC control.

   INT8U FSCAL3;    // Frequency synthesizer calibration.

   INT8U FSCAL2;    // Frequency synthesizer calibration.

INT8U FSCAL1;    // Frequency synthesizer calibration.

   INT8U FSCAL0;    // Frequency synthesizer calibration.

   INT8U FSTEST;    // Frequency synthesizer calibration control

   INT8U TEST2;     // Various test settings.

   INT8U TEST1;     // Various test settings.

   INT8U TEST0;     // Various test settings.

   INT8U IOCFG2;    // GDO2 output pin configuration

   INT8U IOCFG0;    // GDO0 output pin configuration

   INT8U PKTCTRL1;  // Packet automation control.

   INT8U PKTCTRL0;  // Packet automation control.

   INT8U ADDR;      // Device address.

   INT8U PKTLEN;    // Packet length.

} RF_SETTINGS;


/////////////////////////////////////////////////////////////////[page]

const RF_SETTINGS rfSettings =

{

0x00,

   0x08,   // FSCTRL1   Frequency synthesizer control.

   0x00,   // FSCTRL0   Frequency synthesizer control.

   0x10,   // FREQ2     Frequency control word, high byte.

   0xA7,   // FREQ1     Frequency control word, middle byte.

   0x62,   // FREQ0     Frequency control word, low byte.

   0x5B,   // MDMCFG4   Modem configuration.

   0xF8,   // MDMCFG3   Modem configuration.

   0x03,   // MDMCFG2   Modem configuration.

   0x22,   // MDMCFG1   Modem configuration.

   0xF8,   // MDMCFG0   Modem configuration.


   0x00,   // CHANNR    Channel number.

   0x47,   // DEVIATN   Modem deviation setting (when FSK modulation is enabled).

   0xB6,   // FREND1    Front end RX configuration.

   0x10,   // FREND0    Front end RX configuration.

   0x18,   // MCSM0     Main Radio Control State Machine configuration.

   0x1D,   // FOCCFG    Frequency Offset Compensation Configuration.

   0x1C,   // BSCFG     Bit synchronization Configuration.

   0xC7,   // AGCCTRL2  AGC control.

   0x00,   // AGCCTRL1  AGC control.

   0xB2,   // AGCCTRL0  AGC control.


   0xEA,   // FSCAL3    Frequency synthesizer calibration.

   0x2A,   // FSCAL2    Frequency synthesizer calibration.

   0x00,   // FSCAL1    Frequency synthesizer calibration.

   0x11,   // FSCAL0    Frequency synthesizer calibration.

   0x59,   // FSTEST    Frequency synthesizer calibration.

   0x81,   // TEST2     Various test settings.

   0x35,   // TEST1     Various test settings.

   0x09,   // TEST0     Various test settings.

   0x0B,   // IOCFG2    GDO2 output pin configuration.

   0x06,   // IOCFG0D   GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.


   0x04,   // PKTCTRL1  Packet automation control.

   0x05,   // PKTCTRL0  Packet automation control.

   0x00,   // ADDR      Device address.

   0x0c    // PKTLEN    Packet length.

};

//***************************

//函数名:delay(unsigned int s)

//输入:时间

//输出:无

//功能描述:普通廷时,内部用

//****************************

static void delay(unsigned int s)

{

unsigned int i;

for(i=0; i0;i--);  

}

void halWait(INT16U timeout) {

   do {

       _nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

   } while (--timeout);

}



void SpiInit(void)

{

CSN=0;

SCK=0;

CSN=1;

}


/*****************************

//函数名:CpuInit()

//输入:无

//输出:无

//功能描述:SPI初始化程序

/*************************************/

void CpuInit(void)

{

SpiInit();

delay(5000);

}


//*************************************

//函数名:SpisendByte(INT8U dat)

//输入:发送的数据

//输出:无

//功能描述:SPI发送一个字节

//*************************************

INT8U SpiTxRxByte(INT8U dat)

{

INT8U i,temp;

temp = 0;

SCK = 0;

for(i=0; i<8; i++)

{

if(dat & 0x80)

{

MOSI = 1;

}

else MOSI = 0;

dat <<= 1;


SCK = 1;

_nop_();

_nop_();


temp <<= 1;

if(MISO)temp++;

SCK = 0;

_nop_();

_nop_();

}

return temp;

}


//*************************************

//函数名:void RESET_CC1100(void)

//输入:无

//输出:无

//功能描述:复位CC1100

//*************************************

void RESET_CC1100(void)

{

CSN = 0;

while (MISO);

   SpiTxRxByte(CCxxx0_SRES); //写入复位命令

while (MISO);

   CSN = 1;

}


//************************************

//函数名:void POWER_UP_RESET_CC1100(void)

//输入:无

//输出:无

//功能描述:上电复位CC1100

//**********************************

void POWER_UP_RESET_CC1100(void)

{

CSN = 1;

halWait(1);

CSN = 0;

halWait(1);

CSN = 1;

halWait(41);

RESET_CC1100();   //复位CC1100

}


//*************************************

//函数名:void halSpiWriteReg(INT8U addr, INT8U value)

//输入:地址和配置字

//输出:无

//功能描述:SPI写寄存器

//************************************

void halSpiWriteReg(INT8U addr, INT8U value)

{

   CSN = 0;

   while (MISO);

   SpiTxRxByte(addr);//写地址

   SpiTxRxByte(value);//写入配置

   CSN = 1;

}


//***********************************

//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)

//输入:地址,写入缓冲区,写入个数

//输出:无

//功能描述:SPI连续写配置寄存器

//**********************************

void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)

{

   INT8U i, temp;

temp = addr | WRITE_BURST;

   CSN = 0;

   while (MISO);

   SpiTxRxByte(temp);

   for (i = 0; i < count; i++)

{

       SpiTxRxByte(buffer[i]);

   }

   CSN = 1;

}


//*******************************

//函数名:void halSpiStrobe(INT8U strobe)

//输入:命令

//输出:无

//功能描述:SPI写命令

//******************************

void halSpiStrobe(INT8U strobe)

{

   CSN = 0;

   while (MISO);

   SpiTxRxByte(strobe);//写入命令

   CSN = 1;

}



//***********************************

//函数名:INT8U halSpiReadReg(INT8U addr)

//输入:地址

//输出:该寄存器的配置字

//功能描述:SPI读寄存器

//**********************************

INT8U halSpiReadReg(INT8U addr)

{

INT8U temp, value;

   temp = addr|READ_SINGLE;//读寄存器命令

CSN = 0;

while (MISO);

SpiTxRxByte(temp);

value = SpiTxRxByte(0);

CSN = 1;

return value;

}



//**********************************

//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)

//输入:地址,读出数据后暂存的缓冲区,读出配置个数

//输出:无

//功能描述:SPI连续写配置寄存器

//*********************************[page]

void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)

{

   INT8U i,temp;

temp = addr | READ_BURST;//写入要读的配置寄存器地址和读命令

   CSN = 0;

   while (MISO);

SpiTxRxByte(temp);  

   for (i = 0; i < count; i++)

{

       buffer[i] = SpiTxRxByte(0);

   }

   CSN = 1;

}



//******************************

//函数名:INT8U halSpiReadReg(INT8U addr)

//输入:地址

//输出:该状态寄存器当前值

//功能描述:SPI读状态寄存器

//*******************************

INT8U halSpiReadStatus(INT8U addr)

{

   INT8U value,temp;

temp = addr | READ_BURST;//写入要读的状态寄存器的地址同时写入读命令

   CSN = 0;

   while (MISO);

   SpiTxRxByte(temp);

value = SpiTxRxByte(0);

CSN = 1;

return value;

}

//*********************************

//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)

//输入:无

//输出:无

//功能描述:配置CC1100的寄存器

//********************************

void halRfWriteRfSettings(void)

{


halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL2);

   // Write register settings

   halSpiWriteReg(CCxxx0_FSCTRL1,  rfSettings.FSCTRL1);

   halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL0);

   halSpiWriteReg(CCxxx0_FREQ2,    rfSettings.FREQ2);

   halSpiWriteReg(CCxxx0_FREQ1,    rfSettings.FREQ1);

   halSpiWriteReg(CCxxx0_FREQ0,    rfSettings.FREQ0);

   halSpiWriteReg(CCxxx0_MDMCFG4,  rfSettings.MDMCFG4);

   halSpiWriteReg(CCxxx0_MDMCFG3,  rfSettings.MDMCFG3);

   halSpiWriteReg(CCxxx0_MDMCFG2,  rfSettings.MDMCFG2);

   halSpiWriteReg(CCxxx0_MDMCFG1,  rfSettings.MDMCFG1);

   halSpiWriteReg(CCxxx0_MDMCFG0,  rfSettings.MDMCFG0);

   halSpiWriteReg(CCxxx0_CHANNR,   rfSettings.CHANNR);

   halSpiWriteReg(CCxxx0_DEVIATN,  rfSettings.DEVIATN);

   halSpiWriteReg(CCxxx0_FREND1,   rfSettings.FREND1);

   halSpiWriteReg(CCxxx0_FREND0,   rfSettings.FREND0);

   halSpiWriteReg(CCxxx0_MCSM0 ,   rfSettings.MCSM0 );

   halSpiWriteReg(CCxxx0_FOCCFG,   rfSettings.FOCCFG);

   halSpiWriteReg(CCxxx0_BSCFG,    rfSettings.BSCFG);

   halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);

halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);

   halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);

   halSpiWriteReg(CCxxx0_FSCAL3,   rfSettings.FSCAL3);

halSpiWriteReg(CCxxx0_FSCAL2,   rfSettings.FSCAL2);

halSpiWriteReg(CCxxx0_FSCAL1,   rfSettings.FSCAL1);

   halSpiWriteReg(CCxxx0_FSCAL0,   rfSettings.FSCAL0);

   halSpiWriteReg(CCxxx0_FSTEST,   rfSettings.FSTEST);

   halSpiWriteReg(CCxxx0_TEST2,    rfSettings.TEST2);

   halSpiWriteReg(CCxxx0_TEST1,    rfSettings.TEST1);

   halSpiWriteReg(CCxxx0_TEST0,    rfSettings.TEST0);

   halSpiWriteReg(CCxxx0_IOCFG2,   rfSettings.IOCFG2);

   halSpiWriteReg(CCxxx0_IOCFG0,   rfSettings.IOCFG0);    

   halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);

   halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);

   halSpiWriteReg(CCxxx0_ADDR,     rfSettings.ADDR);

   halSpiWriteReg(CCxxx0_PKTLEN,   rfSettings.PKTLEN);

}


//**********************************************

//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)

//输入:发送的缓冲区,发送数据个数

//输出:无

//功能描述:CC1100发送一组数据

//*****************************************


void halRfSendPacket(INT8U *txBuffer, INT8U size)

{

halSpiWriteReg(CCxxx0_TXFIFO, size);

   halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size);//写入要发送的数据


   halSpiStrobe(CCxxx0_STX);//进入发送模式发送数据


   // Wait for GDO0 to be set -> sync transmitted

   while (!GDO0);

   // Wait for GDO0 to be cleared -> end of packet

   while (GDO0);

halSpiStrobe(CCxxx0_SFTX);

}



void setRxMode(void)

{

   halSpiStrobe(CCxxx0_SRX);//进入接收状态

}

//---------------------------------------------------------------------------

INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)

{

   INT8U status[2];

   INT8U packetLength;

INT8U i=(*length)*4;  // 具体多少要根据datarate和length来决定


   halSpiStrobe(CCxxx0_SRX);//进入接收状态

//delay(5);

   //while (!GDO1);

   //while (GDO1);

delay(2);

while (GDO0)

{

delay(2);

--i;

if(i<1)

  return 0;    

}

   if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0

{

       packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度

       if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度

{

           halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据

           *length = packetLength;//把接收数据长度的修改为当前数据的长度

       

           // Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)

           halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位

halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区

           return (status[1] & CRC_OK);//如果校验成功返回接收成功

       }

else

{

           *length = packetLength;

           halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区

           return 0;

       }

   }

else

return 0;

}

//*****************************************************************************************

void disdignit()

{

char i;

if(temp[0])

{

for(i=0;i<3;i++)

{

P0=0xC6;

led0=0;

delay1(40);

led0=1;

P0=seg[temp[1]];

led1=0;

delay1(40);

led1=1;

P0=seg1[temp[5]];

led2=0;

delay1(40);

led2=1;

P0=seg[temp[4]];

led3=0;

delay1(40);

led3=1;

}

}

}

//********************************************************************************

void StartUART( void )

{  //波特率4800

    SCON = 0x50;

    TMOD = 0x20;

    TH1 = 0xFA;

    TL1 = 0xFA;

    PCON = 0x00;

    TR1 = 1;

}

void R_S_Byte(INT8U R_Byte)

{

SBUF = R_Byte;  

    while( TI == 0 );//查询法

  TI = 0;

   

}

void main(void)

{

INT8U i,leng =0;

INT8U RxBuf[8]={0};// 8字节, 如果需要更长的数据包,请正确设置

CpuInit();

POWER_UP_RESET_CC1100();

halRfWriteRfSettings();

halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);//发射功率设置

delay(6000);

StartUART();

while(1)

{

leng =4; // 预计接受8 bytes

  if(halRfReceivePacket(RxBuf,&leng))  //判断是否接收到数据

{

temp[0]=RxBuf[3];      //符号位

temp[2]=((RxBuf[2]<<4)|RxBuf[1]);//整数位

temp[1]=RxBuf[0];//小数位

temp[4]=RxBuf[2];//十位

temp[5]=RxBuf[1];

/*for(i=0;i<3;i++)

{

R_S_Byte(temp[2-i]);

delay(100);

} */

disdignit();

disdignit();

R_S_Byte('t');

disdignit();

disdignit();

disdignit();

R_S_Byte(0x30+temp[4]);

R_S_Byte(0x30+temp[5]);

R_S_Byte('.');

R_S_Byte(0x30+temp[1]);

disdignit();

disdignit();

}

if(temp[2]>=0x30)//大于30度时报警,0x30转换成10进制为48

{

BELL=0;   //打开蜂明器

}

else

{

BELL=1;  //关闭蜂明器

}

}

}
关键字:STC89C52  单片机  CC1101  无线模块 引用地址:STC89C52单片机驱动CC1101无线模块的接收C语言程序

上一篇:继续裸奔:面包板上的光立方
下一篇:51单片机DS18B20温度控制报警程序(可设置温控范围)

推荐阅读最新更新时间:2024-03-16 14:23

基于ATmega16单片机的数字电子秤设计
0 引言 随着电子技术和自动化测量技术的不断发展,传统的称重系统在功能、精度、性价比等方面已难以满足人们的需要,尤其在智能化、便携式、对微小质量的测量方面更显得力不从心。近年来,新型单片机的出现和集成电路技术的发展为更新产品设计,研制高性价比的称重控制器提供了条件。本设计采用AVR单片机为控制核心,结合电阻应变式压力传感器和相应的信号采集电路,设计出一种高精度、多功能、低成本的新型电子秤。 1 系统总体设计 首先由称重传感器采集因压力变化而产生的电压信号,通过A/D转换器将模拟信号转换为数字信号,把数字信号送入AVR单片机,单片机做相应的处理后,得到当前物体重量的数据,并通过LCD显示出来。系统硬件结构如图1所示。 系统硬
[单片机]
基于ATmega16<font color='red'>单片机</font>的数字电子秤设计
DSP与单片机通信的多种方案设计
将DSP和单片机构成双CPU处理器平台,可以充分利用DSP对大容量数据和复杂算法的处理能力,以及单片机接口的控制能力。而DSP与单片机之间快速正确的通信是构建双CPU处理器的关键问题。下面就此问题分别设计串行SCI、SPI和并行HPI三种连接方式。 1 串行通信设计与实现 1 1 SCI串行通信设计 1.1.1 多通道缓冲串行口McBSP原理   TMS320VC5402(简称VC5402)提供了2个支持高速、全双工、带缓冲、多种数据格式等优点的多通道缓冲串行口McBSP。MCESP分为数据通路和控制通路。①数据通路负责完成数据的收发。CPU或DMAC能够向数据发送寄存器DXR写入数据,DXR中的数据通过发送移位寄存器
[应用]
单片机开发人员的几个常疏忽的问题点
我的工作主要是主导新产品试产,在实际的工作中,经常出现因为RD人员的设计 疏忽 导致试产失败。这个疏忽要加上引号,是因为这并不是真正的粗心造成的,而是对生产工艺的不熟悉而导致的。为了避免各位做RD的朋友出现同样的错误,或为了更好的完成试产我对一些常见的问题点做一些总结,希望能对大家有所帮助。 1、IC封装的选择。现在电子产品都在向环保的无铅发展,欧洲2006年7月1日就要实现全部无铅化,,现在正处于有铅向无铅的过渡期。因此,元器件厂商提供的元器件也出现无铅与有铅两种规格,有的厂商甚至已经停止了有铅元器件的生产。 问题点就在于这有铅和无铅两种元器件的选择上,当一个产品设计完成后,RD人员需要对具体元器件进行确认,请在确认
[单片机]
PIC12F508单片机学习之三—按键唤醒
PIC12F508单片机是没有中断的,按键中断只能是查询方式。 编译器用的XC8,编译环境IDE用的是MPLAB X IDE。 下载器是PICKIT3. //*************************************************** // __________________ // VDD-| 1 8 |-VSS // GP5-| 2 27 |-GP0/DAT // GP4-| 3 26 |-GP1/CLK //GP3/RMCLR--| 4 25 |-GP2 // |_______________
[单片机]
关于51单片机的P0口上拉电阻取值问题
有很多朋友在学习51单片机的时候,都会对其P0口上拉电阻阻值的取值问题而头疼。其实,P0口接不接上拉电阻,电阻值该选择多大的都是根据不同的情况来选择的。下面来简单分析下如下的几种情况: 第一种:P0口作为共阳极LED数码管的驱动端口。这种情况下,P0口主要是以吸收电流来作为有效工作方式,不对外输出高电平,此时,不应接上拉,任何上拉都不要接。接多少丢多少。不仅增加成本,而且增大了工作电流。至于数码管的鬼影问题,那是程序部分的问题,与硬件无关。 第二种:P0口作为数据传输接口。这种情况下,P0口需要输出高电平,而高电平的输出其实就是来自于上拉电阻。在数据输出状态下,P0口的负载都是逻辑器件,不需要大的输入功率,那么,就可以采用电阻值较
[单片机]
基于单片机的对讲机加密系统设计
CTCSS(Continuous Tone Controlled Squelch Systern,连续语音控制静噪系统)是一种将低于音频频率的频率(67.0~250.3 Hz)附加在音频信号中一起传输的技术。国际标准的CTCSS编码一共有38组频率,因为这些静噪信号频率为67.0~250.3 Hz,低于话音通信带宽的下限,所以被称为“亚音频”。CTCSS技术已经广泛用于无线电通信中,是传统无线电台通信中一种常见的收发限制手段。在电台的中继站和对讲机中,采用CTCSS技术可以避免接收到不相干的呼叫。   在对讲机设计中采用亚音频技术,其目的是避免不同用户的相互干扰,避免收听无关的呼叫和干扰信号。因为它可以在共同信道中制止来自其他用
[单片机]
基于<font color='red'>单片机</font>的对讲机加密系统设计
51单片机驱动ADC0809片内RAM存转换结果汇编程序
;入口:通道1的模拟量, ;出口:片内RAM开辟一个数据区,用于存放A/D转换结果, IN0 IN7的结果 ;分别存于30H 37H 8个单元中 AD0809: MOV R1,#01H ACALL AD0809_1 RET AD0809_1:MOV DPTR,# ;通道地址 MOV A,R1 ;送通道号 MOVX @DPTR,A;启动转换 WAIT: NOP JNB R1.7,WAIT ;P1.7为EOC信号 为1完成,0,转换中。 MOVX A,@DPTR ;转换完成 XCH A,R1 ADD A,#30H XCH A,R1 MOV @R1,A RET
[单片机]
CC2530芯片的主要特性以及它的应用领域
CC2530(无线片上系统单片机)是用于IEEE802.15.4,ZigBee和RF4CE应用的一个真正的片上系统解决方案,它能够以非常低的成本建立起一个强大的无线网络。并且CC530还结合了领先的2.4GHz的RF收发器的优良性能,是业界标准的增强型的8051单片机,所以如果了解过51单片机,要入门CC2530也是很简单的。芯片引脚图如下: 根据芯片内置闪存的容量不容,可以分为四个类型:CC2530F32/64/128/256。编号后缀分别代表:具有32KB/64KB/128KB/256KB的闪存。 CC2530芯片主要特性 1、高性能、低功耗且具有代码预取功能的8051微控制器内核 2、符合2.4GHz IEEE802.1
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved