#include#defineINT8Uunsigned char #defineINT16Uunsigned int #define WRITE_BURST 0x40//连续写入 #define READ_SINGLE 0x80//读 #define READ_BURST 0xC0//连续读 #define BYTES_IN_RXFIFO 0x7F //接收缓冲区的有效字节数 #define CRC_OK 0x80 //CRC校验通过位标志 //************CC1100接口*************** sbit GDO0=P3^3; sbit GDO2=P1^4; sbitMISO=P1^2; sbitMOSI=P1^1; sbitSCK=P3^2; sbitCSN=P1^3; //sbit GDO0=P1^3; //sbit GDO2=P1^2; //sbitMISO=P1^4; //sbitMOSI=P3^2; //sbitSCK=P1^1; //sbitCSN=P3^3; //**************按键**************** sbit KEY1 =P3^6; sbit KEY2 =P3^7; //**********数码管位选********** sbitled3=P2^0; sbitled2=P2^1; sbitled1=P2^2; sbitled0=P2^3; //**************蜂鸣器*********** sbit BELL=P3^4; //*************数码管?**************** INT8U seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0~~9段码 INT8U seg1[10]={0x40,0x4F,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10}; //***************按键**************** INT8U data temp_data[2]={0x00,0x00}; INT8U dispaly[8], temp[6]; //更多功率参数设置可详细参考DATACC1100英文文档中第48-49页的参数表 //INT8U PaTabel[8] = {0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04}; //-30dBm 功率最小 INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60}; //0dBm //INT8U PaTabel[8] = {0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0}; //10dBm 功率最大 //**************************** void SpiInit(void); void CpuInit(void); void RESET_CC1100(void); void POWER_UP_RESET_CC1100(void); void halSpiWriteReg(INT8U addr, INT8U value); void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count); void halSpiStrobe(INT8U strobe); INT8U halSpiReadReg(INT8U addr); void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count); INT8U halSpiReadStatus(INT8U addr); void halRfWriteRfSettings(void); void halRfSendPacket(INT8U *txBuffer, INT8U size); INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length); void StartUART( void ); void R_S_Byte(INT8U R_Byte); //************************ // CC1100 STROBE, CONTROL AND STATUS REGSITER #define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration #define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration #define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration #define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds #define CCxxx0_SYNC1 0x04 // Sync word, high INT8U #define CCxxx0_SYNC0 0x05 // Sync word, low INT8U #define CCxxx0_PKTLEN 0x06 // Packet length #define CCxxx0_PKTCTRL1 0x07 // Packet automation control #define CCxxx0_PKTCTRL0 0x08 // Packet automation control #define CCxxx0_ADDR 0x09 // Device address #define CCxxx0_CHANNR 0x0A // Channel number #define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control #define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control #define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U #define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U #define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U #define CCxxx0_MDMCFG4 0x10 // Modem configuration #define CCxxx0_MDMCFG3 0x11 // Modem configuration #define CCxxx0_MDMCFG2 0x12 // Modem configuration #define CCxxx0_MDMCFG1 0x13 // Modem configuration #define CCxxx0_MDMCFG0 0x14 // Modem configuration #define CCxxx0_DEVIATN 0x15 // Modem deviation setting #define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration #define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration #define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration #define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration #define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration #define CCxxx0_AGCCTRL2 0x1B // AGC control #define CCxxx0_AGCCTRL1 0x1C // AGC control #define CCxxx0_AGCCTRL0 0x1D // AGC control #define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout #define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout #define CCxxx0_WORCTRL 0x20 // Wake On Radio control #define CCxxx0_FREND1 0x21 // Front end RX configuration #define CCxxx0_FREND0 0x22 // Front end TX configuration #define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration #define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration #define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration #define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration #define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration #define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration #define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control #define CCxxx0_PTEST 0x2A // Production test #define CCxxx0_AGCTEST 0x2B // AGC test #define CCxxx0_TEST2 0x2C // Various test settings #define CCxxx0_TEST1 0x2D // Various test settings #define CCxxx0_TEST0 0x2E // Various test settings // Strobe commands #define CCxxx0_SRES 0x30 // Reset chip. #define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1). // If in RX/TX: Go to a wait state where only the synthesizer is // running (for quick RX / TX turnaround). #define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator. #define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off // (enables quick start). #define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and // MCSM0.FS_AUTOCAL=1. #define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if // MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled: // Only go to TX if channel is clear. #define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit // Wake-On-Radio mode if applicable. #define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer #define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio) #define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high. #define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer. #define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer. #define CCxxx0_SWORRST 0x3C // Reset real time clock. #define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two // INT8Us for simpler software. #define CCxxx0_PARTNUM 0x30 #define CCxxx0_VERSION 0x31 #define CCxxx0_FREQEST 0x32 #define CCxxx0_LQI 0x33 #define CCxxx0_RSSI 0x34 #define CCxxx0_MARCSTATE 0x35 #define CCxxx0_WORTIME1 0x36 #define CCxxx0_WORTIME0 0x37 #define CCxxx0_PKTSTATUS 0x38 #define CCxxx0_VCO_VC_DAC 0x39 #define CCxxx0_TXBYTES 0x3A #define CCxxx0_RXBYTES 0x3B #define CCxxx0_PATABLE 0x3E #define CCxxx0_TXFIFO 0x3F #define CCxxx0_RXFIFO 0x3F // RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers typedef struct S_RF_SETTINGS { INT8U FSCTRL2; INT8U FSCTRL1; // Frequency synthesizer control. INT8U FSCTRL0; // Frequency synthesizer control. INT8U FREQ2; // Frequency control word, high INT8U. INT8U FREQ1; // Frequency control word, middle INT8U. INT8U FREQ0; // Frequency control word, low INT8U. INT8U MDMCFG4; // Modem configuration. INT8U MDMCFG3; // Modem configuration. INT8U MDMCFG2; // Modem configuration. INT8U MDMCFG1; // Modem configuration. INT8U MDMCFG0; // Modem configuration. INT8U CHANNR; // Channel number. INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled). INT8U FREND1; // Front end RX configuration. INT8U FREND0; // Front end RX configuration. INT8U MCSM0; // Main Radio Control State Machine configuration. INT8U FOCCFG; // Frequency Offset Compensation Configuration. INT8U BSCFG; // Bit synchronization Configuration. INT8U AGCCTRL2; // AGC control. INT8U AGCCTRL1; // AGC control. INT8U AGCCTRL0; // AGC control. INT8U FSCAL3; // Frequency synthesizer calibration. INT8U FSCAL2; // Frequency synthesizer calibration. INT8U FSCAL1; // Frequency synthesizer calibration. INT8U FSCAL0; // Frequency synthesizer calibration. INT8U FSTEST; // Frequency synthesizer calibration control INT8U TEST2; // Various test settings. INT8U TEST1; // Various test settings. INT8U TEST0; // Various test settings. INT8U IOCFG2; // GDO2 output pin configuration INT8U IOCFG0; // GDO0 output pin configuration INT8U PKTCTRL1; // Packet automation control. INT8U PKTCTRL0; // Packet automation control. INT8U ADDR; // Device address. INT8U PKTLEN; // Packet length. } RF_SETTINGS; /////////////////////////////////////////////////////////////////[page] const RF_SETTINGS rfSettings = { 0x00, 0x08, // FSCTRL1 Frequency synthesizer control. 0x00, // FSCTRL0 Frequency synthesizer control. 0x10, // FREQ2 Frequency control word, high byte. 0xA7, // FREQ1 Frequency control word, middle byte. 0x62, // FREQ0 Frequency control word, low byte. 0x5B, // MDMCFG4 Modem configuration. 0xF8, // MDMCFG3 Modem configuration. 0x03, // MDMCFG2 Modem configuration. 0x22, // MDMCFG1 Modem configuration. 0xF8, // MDMCFG0 Modem configuration. 0x00, // CHANNR Channel number. 0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled). 0xB6, // FREND1 Front end RX configuration. 0x10, // FREND0 Front end RX configuration. 0x18, // MCSM0 Main Radio Control State Machine configuration. 0x1D, // FOCCFG Frequency Offset Compensation Configuration. 0x1C, // BSCFG Bit synchronization Configuration. 0xC7, // AGCCTRL2 AGC control. 0x00, // AGCCTRL1 AGC control. 0xB2, // AGCCTRL0 AGC control. 0xEA, // FSCAL3 Frequency synthesizer calibration. 0x2A, // FSCAL2 Frequency synthesizer calibration. 0x00, // FSCAL1 Frequency synthesizer calibration. 0x11, // FSCAL0 Frequency synthesizer calibration. 0x59, // FSTEST Frequency synthesizer calibration. 0x81, // TEST2 Various test settings. 0x35, // TEST1 Various test settings. 0x09, // TEST0 Various test settings. 0x0B, // IOCFG2 GDO2 output pin configuration. 0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation. 0x04, // PKTCTRL1 Packet automation control. 0x05, // PKTCTRL0 Packet automation control. 0x00, // ADDR Device address. 0x0c // PKTLEN Packet length. }; //*************************** //函数名:delay(unsigned int s) //输入:时间 //输出:无 //功能描述:普通廷时,内部用 //**************************** static void delay(unsigned int s) { unsigned int i; for(i=0; i 0;i--); } void halWait(INT16U timeout) { do { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); } while (--timeout); } void SpiInit(void) { CSN=0; SCK=0; CSN=1; } /***************************** //函数名:CpuInit() //输入:无 //输出:无 //功能描述:SPI初始化程序 /*************************************/ void CpuInit(void) { SpiInit(); delay(5000); } //************************************* //函数名:SpisendByte(INT8U dat) //输入:发送的数据 //输出:无 //功能描述:SPI发送一个字节 //************************************* INT8U SpiTxRxByte(INT8U dat) { INT8U i,temp; temp = 0; SCK = 0; for(i=0; i<8; i++) { if(dat & 0x80) { MOSI = 1; } else MOSI = 0; dat <<= 1; SCK = 1; _nop_(); _nop_(); temp <<= 1; if(MISO)temp++; SCK = 0; _nop_(); _nop_(); } return temp; } //************************************* //函数名:void RESET_CC1100(void) //输入:无 //输出:无 //功能描述:复位CC1100 //************************************* void RESET_CC1100(void) { CSN = 0; while (MISO); SpiTxRxByte(CCxxx0_SRES); //写入复位命令 while (MISO); CSN = 1; } //************************************ //函数名:void POWER_UP_RESET_CC1100(void) //输入:无 //输出:无 //功能描述:上电复位CC1100 //********************************** void POWER_UP_RESET_CC1100(void) { CSN = 1; halWait(1); CSN = 0; halWait(1); CSN = 1; halWait(41); RESET_CC1100(); //复位CC1100 } //************************************* //函数名:void halSpiWriteReg(INT8U addr, INT8U value) //输入:地址和配置字 //输出:无 //功能描述:SPI写寄存器 //************************************ void halSpiWriteReg(INT8U addr, INT8U value) { CSN = 0; while (MISO); SpiTxRxByte(addr);//写地址 SpiTxRxByte(value);//写入配置 CSN = 1; } //*********************************** //函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count) //输入:地址,写入缓冲区,写入个数 //输出:无 //功能描述:SPI连续写配置寄存器 //********************************** void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count) { INT8U i, temp; temp = addr | WRITE_BURST; CSN = 0; while (MISO); SpiTxRxByte(temp); for (i = 0; i < count; i++) { SpiTxRxByte(buffer[i]); } CSN = 1; } //******************************* //函数名:void halSpiStrobe(INT8U strobe) //输入:命令 //输出:无 //功能描述:SPI写命令 //****************************** void halSpiStrobe(INT8U strobe) { CSN = 0; while (MISO); SpiTxRxByte(strobe);//写入命令 CSN = 1; } //*********************************** //函数名:INT8U halSpiReadReg(INT8U addr) //输入:地址 //输出:该寄存器的配置字 //功能描述:SPI读寄存器 //********************************** INT8U halSpiReadReg(INT8U addr) { INT8U temp, value; temp = addr|READ_SINGLE;//读寄存器命令 CSN = 0; while (MISO); SpiTxRxByte(temp); value = SpiTxRxByte(0); CSN = 1; return value; } //********************************** //函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count) //输入:地址,读出数据后暂存的缓冲区,读出配置个数 //输出:无 //功能描述:SPI连续写配置寄存器 //*********************************[page] void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count) { INT8U i,temp; temp = addr | READ_BURST;//写入要读的配置寄存器地址和读命令 CSN = 0; while (MISO); SpiTxRxByte(temp); for (i = 0; i < count; i++) { buffer[i] = SpiTxRxByte(0); } CSN = 1; } //****************************** //函数名:INT8U halSpiReadReg(INT8U addr) //输入:地址 //输出:该状态寄存器当前值 //功能描述:SPI读状态寄存器 //******************************* INT8U halSpiReadStatus(INT8U addr) { INT8U value,temp; temp = addr | READ_BURST;//写入要读的状态寄存器的地址同时写入读命令 CSN = 0; while (MISO); SpiTxRxByte(temp); value = SpiTxRxByte(0); CSN = 1; return value; } //********************************* //函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings) //输入:无 //输出:无 //功能描述:配置CC1100的寄存器 //******************************** void halRfWriteRfSettings(void) { halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2); // Write register settings halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1); halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0); halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2); halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1); halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0); halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4); halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3); halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2); halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1); halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0); halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR); halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN); halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1); halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0); halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 ); halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG); halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG); halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2); halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1); halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0); halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3); halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2); halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1); halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0); halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST); halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2); halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1); halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0); halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2); halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0); halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1); halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0); halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR); halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN); } //********************************************** //函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size) //输入:发送的缓冲区,发送数据个数 //输出:无 //功能描述:CC1100发送一组数据 //***************************************** void halRfSendPacket(INT8U *txBuffer, INT8U size) { halSpiWriteReg(CCxxx0_TXFIFO, size); halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size);//写入要发送的数据 halSpiStrobe(CCxxx0_STX);//进入发送模式发送数据 // Wait for GDO0 to be set -> sync transmitted while (!GDO0); // Wait for GDO0 to be cleared -> end of packet while (GDO0); halSpiStrobe(CCxxx0_SFTX); } void setRxMode(void) { halSpiStrobe(CCxxx0_SRX);//进入接收状态 } //--------------------------------------------------------------------------- INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length) { INT8U status[2]; INT8U packetLength; INT8U i=(*length)*4; // 具体多少要根据datarate和length来决定 halSpiStrobe(CCxxx0_SRX);//进入接收状态 //delay(5); //while (!GDO1); //while (GDO1); delay(2); while (GDO0) { delay(2); --i; if(i<1) return 0; } if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0 { packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度 if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度 { halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据 *length = packetLength;//把接收数据长度的修改为当前数据的长度 // Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI) halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位 halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区 return (status[1] & CRC_OK);//如果校验成功返回接收成功 } else { *length = packetLength; halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区 return 0; } } else return 0; } //***************************************************************************************** void disdignit() { char i; if(temp[0]) { for(i=0;i<3;i++) { P0=0xC6; led0=0; delay1(40); led0=1; P0=seg[temp[1]]; led1=0; delay1(40); led1=1; P0=seg1[temp[5]]; led2=0; delay1(40); led2=1; P0=seg[temp[4]]; led3=0; delay1(40); led3=1; } } } //******************************************************************************** void StartUART( void ) { //波特率4800 SCON = 0x50; TMOD = 0x20; TH1 = 0xFA; TL1 = 0xFA; PCON = 0x00; TR1 = 1; } void R_S_Byte(INT8U R_Byte) { SBUF = R_Byte; while( TI == 0 );//查询法 TI = 0; } void main(void) { INT8U i,leng =0; INT8U RxBuf[8]={0};// 8字节, 如果需要更长的数据包,请正确设置 CpuInit(); POWER_UP_RESET_CC1100(); halRfWriteRfSettings(); halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);//发射功率设置 delay(6000); StartUART(); while(1) { leng =4; // 预计接受8 bytes if(halRfReceivePacket(RxBuf,&leng)) //判断是否接收到数据 { temp[0]=RxBuf[3]; //符号位 temp[2]=((RxBuf[2]<<4)|RxBuf[1]);//整数位 temp[1]=RxBuf[0];//小数位 temp[4]=RxBuf[2];//十位 temp[5]=RxBuf[1]; /*for(i=0;i<3;i++) { R_S_Byte(temp[2-i]); delay(100); } */ disdignit(); disdignit(); R_S_Byte('t'); disdignit(); disdignit(); disdignit(); R_S_Byte(0x30+temp[4]); R_S_Byte(0x30+temp[5]); R_S_Byte('.'); R_S_Byte(0x30+temp[1]); disdignit(); disdignit(); } if(temp[2]>=0x30)//大于30度时报警,0x30转换成10进制为48 { BELL=0; //打开蜂明器 } else { BELL=1; //关闭蜂明器 } } }
上一篇:继续裸奔:面包板上的光立方
下一篇:51单片机DS18B20温度控制报警程序(可设置温控范围)
推荐阅读最新更新时间:2024-03-16 14:23