采用Arduino为核心控制的智能小车避障系统

发布者:rocky96最新更新时间:2015-08-10 来源: vihome关键字:Arduino  核心控制  智能小车  避障系统 手机看文章 扫描二维码
随时随地手机看文章
人工智能技术是与多门基础学科联系紧密、相互促进相互发展的前沿技术,是集计算机、物理学、生理学、控制技术、传感器技术等于一体的高新技术产业。人工智能技术的应用领域也越来越广泛,除了传统的工业领域,人工智能技术的应用也涉及到军事、娱乐、服务、医疗等领域”。

随着机器人技术的不断发展,人们对机器人的要求也越来越高,机器人的智能化已成为当今的热点。智能小车作 为一种四轮驱动的智能机器人,它行动灵活、操作方便,车上可集成各种精密传感器数据处理模块,其避障功能保证了智能小车在行进过程中行进方向的自行调节, 避免发生碰撞、碰擦,是智能小车的重要组成部分。目前,智能小车大多采用单个传感器实现单面避障,但单面避障存在着固有的缺陷,如:障碍物探测缓慢、避障 成功率较低等。由此,设计了一种能全方位避障的智能小车系统,采用红外单点避障与超声波双路避障相结合的模式,可实现多面自动探测,并实现全方位避障,有 效提高了避障的成功率和效率。

1 系统设计

设计的避障系统采 用红外单点避障与超声波双路避障相结合的模式,以实现对障碍物的全方位有效避障。为此,在小车前端中央设置一个红外避障传感器,用于探测小车前方障碍物, 再在小车前端两侧设置左右两个超声波避障传感器,他们分别探测小车前方左右两侧障碍物,有效的扩大了探测范围,从而实现了小车的全方位避障。

本系统利用多模块协调配合,使其具有较高自适应能力。硬件以需求为基础,选择了合适的模块,总体模块中包含:电源模块,红外传感模块,超声波传感模块,电机驱动模块,Arduino模块等。系统整体框图如图1所示。

图1 系统硬件结构图
图1 系统硬件结构图

1.1 Arduino模块

设计中采用Arduino duemilanove作为核心控制模块,Arduino是一款便捷灵活且十分方便上手的开源电子原型平台,能通过各种各样的传感器来感知环境,通过灯光、电机和其他的装置来反馈、影响环境。

Arduino duemilanove包括以下几个部分:一个9 V DC输入,一个USB接口,14个数字IO口,6个模拟IO口,1个5 V DC输出和一个3.3 V DC输出。它的核心是一片Atmega 328单片机。

1.2 电机模块

小车采用双直流电机驱动方式,通过控制左右两个直流电机来控制小车转动转向,电机模块如图2所示,直流电机采用直流电机驱动芯片L298N。

L298N 内部包含4通道逻辑驱动电路,是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46 V、2 A以下的电机,正好可以满足小车的左右直流电机的驱动要求。并且L289N具有过温保护功能和较高的噪声抑制比,故十分适用于智能小车中。

图2 电机模块
图2 电机模块

由于芯片L298N并没有对电机转速的控制方式,因此,通过Arduino程序控制调节驱动电机的PWM信号,改变电机输出功率,从而控制左右电机的转速。

1.3 超声波传感器模块

超声波模块由发射电路和接收电路组成,如图3所示。其中发射电路由Em78p153单片机、MAX232及超声波发射头T40等组成,接收电路由TL074运算放大器及超声波接收器R40等组成。

图3 超声波传感器
图3 超声波传感器

探 测时,超声波发射器发射出长约6 mm,频率为40 kHz的超声波信号。此信号被物体反射回来由超声波接收器接收,接收器实质上是一种压电效应的换能器。它接收到信号后产生mV级的微弱电压信号,电压信号 再在核心控制模块中转换为数字信号。设超声波脉冲由传感器发出到接收所经历的时间为t,超声波在空气中的传播速度为c,则从传感器到目标物体的距离D可用 D=ct/2求出。

1.4 红外传感器模块

红外测距模 块采用夏普GP2YOA21红外测距传感器,夏普GP2YOA21型红外测距传感器是基于位置敏感传感器PSD(Position Sensitive Device)的微距传感器,捕捉的是光信号并且有着基于Lucovusky方程的电路设计,其有效的测量距离为80 cm。

红外测距其优点是无盲区、测量精度高、反应速度快,但其缺点受环境影响较大、探测距离较近。因此本文设计了基于多传感器信息融合的智能小车避障系统,采用红外传感器与超声波传感器互补,使机器人具有精确的感测范围。

2 算法分析

针对单传感器避障系统中存在的缺点,本文提出了多传感器协调合作方案,通过超声波传感器和红外传感器的配合,扩大了探测范围以及灵敏性,从而避免了误撞和紧贴障碍物的危险,提高了避障机率,实现了全方位避障。

2.1 流程设计

全 方位避障小车在行进过程中,各传感器不断检测小车周围是否有障碍物。当有传感器检测到障碍物时,通过判断检测到障碍物的传感器的数量,来实现小车全方位自 动避障:单传感器检测到障碍物时,小车远离检测到障碍物方向;两个传感器检测到障碍物时,小车向未检测到障碍物方向转向;所有传感器都检测到障碍物时,小 车急速左转避开障碍物。当小车避开障碍物后,小车继续行进。流程图如图4所示。

图4 程序流程图
图4 程序流程图

2.2 避障代码

根 据以上避障原理,编写相应的程序,以实现小车的全面避障,程序主要分电机、超声波和红外测距三部分。电机部分由analogWrite()、 digitalWrite()分别控制车速和小车前进、后退或转向;超声波测距部分由Trig.Pin控制超声波输入,由EchoPin控制超声波输出, 控制模块通过对接收到的脉冲波时间进行处理,转化为距离参数,从而获得距离Middle_distance;红外测距部分由控制模块通过红外传感器获得一 个模拟量analo.gRead(),通过输出的模拟量可以推算出电压值volts,而输出电压和探测距离关系为 distance:65*pow(volts,-1.10),从而可获得小车与障碍物的距离。

3 实验研究

智能车在进行了器件选型和确定控制算法后,为了验证系统的性能,进行了实验验证。

实验中选用一块放着多种障碍物的平地,障碍物分两大种:一种是规则的障碍物,如正方体、圆柱等。另一种为不规则障碍物。实验时,智能避障小车在行进过程中不断探测前方周围是否有障碍物,当存在障碍物时候,判断出相应障碍物位置,并进行相应动作。

为 了有效验证智能小车避障成功率,通过改变障碍物形状来对小车进行性能测试,结果如图5所示。其中测试小车100次,并统计出单面避障和全方位避障成功通过 不同障碍环境的次数,障碍环境由总数为100的规则障碍物和不规则障碍物组成。由图5可见,普通的单面避障方法有着较低的成功通过率,而本文所提出的全方 位避障方法则受此影响不大,有着较高的通过率。

图5 单面避障与全方位避障成功率对比
图5 单面避障与全方位避障成功率对比

4 结论

设计的基于Arduino的智能小车避障系统,采用了单红外和双超声波避障方式,使小车在行车过程中对障碍物的探测更加精确。实验结果表明,设计的全方位避障系统较大地提高了避障的效率和成功率,可有效地实现全方位避障。

关键字:Arduino  核心控制  智能小车  避障系统 引用地址:采用Arduino为核心控制的智能小车避障系统

上一篇:树莓派DIY之无线感应报警
下一篇:RFID技术及其在ETC系统中的应用

推荐阅读最新更新时间:2024-03-16 14:27

基于线性CCD的两轮自平衡智能小车
近年来,随着技术的不断进步,两轮自平衡小车以其结构简单、轻盈小巧、运动灵活、高效节能等特点,在许多个领域得到了较大的发展。本文设计并制作了一台两轮小车,用飞思卡尔公司生产的MK60DN512ZVLQ10单片机作为核心控制器,加速度计MMA7260和陀螺仪ENC03作为车身姿态控制测量元件,实现两轮小车的自平衡。根据设定速度与小车速度的偏差控制电机的电压,以实现速度控制,并利用线性CCD采集赛道信息,根据路径的弯度控制小车两个轮子的转速实现转向控制,从而实现两轮直立车的寻迹方案。 1 系统组成 系统主要由单片机核心控制器、直立控制模块、速度控制模块、方向控制模块等功能模块构成。直立控制模块包含陀螺仪及加速度计,将它们安装在小车的重心
[单片机]
基于线性CCD的两轮自平衡<font color='red'>智能小车</font>
德仪/英特尔加码投入 Arduino发展添助力
开放原始码硬体平台Arduino近期发展再添柴薪,除英特尔(Intel)正式宣布将与其展开合作外,既有协力夥伴德州仪器(TI)亦推出性能更强的新一代开发板Arduino TRE,皆将有力Arduino扩大市场应用版图。 Arduino社群共同创办人Massimo Banzi表示,透过将英特尔解决方案导入到Arduino开发板,将有助打造出更多令人耳目一新的开发载具,并协助促成令人振奋的创新成果。 在此同时,英特尔也发表Galileo开发板,其是新系列Arduino相容开发板中首款采用英特尔架构的产品,能执行开放原始码的Linux作业系统以及Arduino软体函式库,且允许使用者在Mac OS、Windows、Linux等不同
[半导体设计/制造]
如何使用Arduino和微型伺服系统制造一个小猫机器人
本文要介绍的是一种行走的四足机器人“机器猫”。3DOF 腿,IR 接收器都连接到 Pro ni。 准备工作 我想做一个四足行走的机器人,更像是“哺乳动物”的风格,而不是普通的“蜘蛛”或“昆虫”。灵感来自著名的波士顿动力机器人和其他四足研究机器人。制作这样的机器人非常具有挑战性,因为它很容易因为重心高和脚在身体下方而翻倒,而不是伸展到角落。 展开来看,最终的目的还是使用 和低成本的微型伺服系统制造一个廉价的机器人。这个解决方案当然有它的局限性,不能指望它是完美的。但我今后还准备再设法制造了一些机器人,用很少的预算做最好的事情本身对我来说就是一个挑战。 同时我很早就发现,还需要对反向运动学 (IK) 进行研究以使其
[机器人]
基于二维物体斜面黑线运动智能小车的设计
二维物体斜面运动算法是2005年全国大学生索尼杯电子竞赛E题“悬挂运动控制系统”延伸出的研究课题,其主要内容是设计一个电机控制系统,控制物体在倾斜(仰角≤100°)的板上运动。在一个白色底板上固定两个滑轮,两只电机(固定在板上)通过穿过滑轮吊绳控制一个物体在板上运动,并达到如下要求: 1)控制物体在80x100 cm的范围内做自行设定的运动; 2)控制物体作圆心可任意设定、直径为50 cm的圆周运动; 3)控制物体跟随板上标出的任意曲线运动,线宽1.5~1.8 cm,总长度约50 cm,颜色为黑色,曲线的前一部分是连续的,长约30 cm,后一部分是两段总长约20 cm的间断线段,间断距离不大于1 cm,沿连续曲线运动限定在2
[单片机]
基于二维物体斜面黑线运动<font color='red'>智能小车</font>的设计
激光雷达传感器在机器人避障系统中的应用
(文章来源:ISweek工采网) 随着机器人深入人们的生活,例如工厂、仓库、酒店、商场、餐厅等环境中的使用,人们对机器人的移动能力越为重视,市场对智能化设备的需求日益高涨。以至于避障成为一个极为关键且必要的功能。避障是指移动机器人根据采集的障碍物的状态信息,在行走过程中通过感知到妨碍其通行的静态和动态物体时,按照一定的方法进行有效地避障,最后达到目标点。 实现避障与导航的必要条件是环境感知,在未知或者是部分未知的环境下避障需要通过传感器获取周围环境信息,包括障碍物的尺寸、形状和位置等信息,因此传感器技术在移动机器人避障中起着十分重要的作用。下面工采网小编和大家一起看看超声波传感器和传感器在机器人避障中的相关解决方案。
[机器人]
智能小车运行及测速原理
光电码盘测速原理 如何求解小车速度参数(大小与方向)? 测量速度方向的方法 根据A、B两相脉冲的超前滞后关系确定电机旋转方向: 假定A相超前于B相时,为电机正方向;则当A相滞后于B相,当前电机为反向旋转。 普通测量速度大小的方法 单位时间内采集的脉冲数就是转速大小的表征值,可以根据它转换为各种单位下的转速大小。 四倍频测量速度的大小 下面我们说一下编码器倍频的原理。为了提高大家下面学习的兴趣,我们先明确,这是一项实用的技术,可以真正地把编码器的精度提升 4 倍。作用可类比 于单反相机的光学变焦,而并非牺牲清晰度来放大图像的数码变焦。OK,先看看下面编码器输出的波形图。 这里,我们是通过软件的方法实现四倍频。首先
[单片机]
<font color='red'>智能小车</font>运行及测速原理
采用单片机作为控制核心的智能光电旋钮的设计
目前,在设计仪器的控制面板时,主要采用各种按键,通过检测按键是否被按下产生控制信号。但是,在一些需要连续产生控制信号的场合,使用按键可能带来操作上的不便。而且,长期高频率使用的按键极易损坏。如果使用光电旋钮,根据其旋转速率和旋转方向产生控制信号,就能提高使用的灵活性和可靠性。市场上的此类产品很少,且价格昂贵。经过多次试验,笔者成功地设计出采用单片机作为控制核心的智能光电旋钮。 智能光电旋钮按硬件结构可分为机械部分和硬件电路部分。 机械部分 机械部分的主要功能是完成机械旋转到电信号的转换。如图1所示,机械部分由一个可任意旋转的旋钮、与旋钮相连的遮光片及两对光电收发器组成。遮光片的边缘设计成如图1所示的齿轮形,并
[单片机]
采用单片机作为<font color='red'>控制</font><font color='red'>核心</font>的智能光电旋钮的设计
以C51单片机为核心的嵌入式系统实时控制设计
随着现代通信技术的发展,通信测试仪器不断推陈出新。各种新型设备对系统的实时响应能力的要求越来越高,一种通信测试仪器的实时响应性能,就成为系统设计能否成功的关键因素之一。笔者曾在多个通信测试仪器项目中,成功地应用ARM处理器、C51单片机等为主控芯片的嵌入式系统,实现了对仪器相关模块的实时控制功能。因此提出一种在某通信测试仪器中使用C51单片机来实现实时控制的设计方案。 1 硬件设计与实现 1.1 总体方案设计 在该通信测试仪器中,实时控制模块主要实现对射频接收频综、射频发生频综、滤波器组件、射频输入模块、射频输出模块等实时控制作用。对射频检波信号进行A/D转换以获取数据。与上位计算机进行通信等功能。 根据待实现的系统功能要
[单片机]
以C51单片机为<font color='red'>核心</font>的嵌入式<font color='red'>系统</font>实时<font color='red'>控制</font>设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved