个人感触
写的很好
很多思路是我之前所困扰的,这个解决了自己的很多问题
可以凭借此建立模版,吃透之后对以后工程有质的提高。
(感觉论坛上的高手很多,多看看多学学,总会有收获)
再把文章最后的“实用的单片机系统ms3”源码打出来研究一下。04年就写出来的东西,用到14年还这么多人挺,确实经典。
多思考,多总结,不要总是闷头做!!不断的提高自己,才有收获!!让自己学到东西!
工程的框架感觉就三种
1、裸奔、顺序执行、大循环 新手和小程序都这样
3、操作系统 小的RTX51、ucos这些,大点linux,都是很常见。
个人感觉51、avr、freescale、msp430、stm32这些低端单片机用时间片轮转就比较好,时间和底层把握的都比较好。
用arm7、9、11像2440、6410这些跑linux这些比较好。
转载的正文
从07年参加全国大学生电子设计大赛初次接触单片机开发至今已经有4年了,初学单片机时,都会纠结于其各个模块功能的应用,如串口(232,485)对各种功能IC的控制,电机控制PWM,中断应用,定时器应用,人机界面应用,CAN总线等. 这是一个学习过程中必需的阶段,是基本功。很庆幸,在参加电子设计大赛赛前培训时,MCU周围的控制都训练的很扎实。经过这个阶段后,后来接触不同的MCU就会发现,都大同小异,各有各的优势而已,学任何一种新的MCU都很容易入手包括一些复杂的处理器。而且对MCU的编程控制会提升一个高度概况——就是对各种外围进行控制(如果是对复杂算法的运算就会
用DSP了),而外围与MCU的通信方式一般也就几种时序:IIC,SPI,intel8080,M6800。这样看来MCU周围的编程就是一个很简单的东西了。
然而这只是嵌入式开发中的一点皮毛而已,在接触过多种MCU,接触过复杂设计要求,跑过操作系统等等后,我们在回到单片机的裸机开发时,就不知不觉的就会考虑到整个程序设计的架构问题;一个好的程序架构,是一个有经验的工程师和一个初学者的分水岭。
以下是我对单片机程序框架以及开发中一些常用部分的认识总结:
任何对时间要求苛刻的需求都是我们的敌人,在必要的时候我们只有增加硬件成本来消灭它;比如你要8个数码管来显示,我们在没有相关的硬件支持的时候必须用MCU以动态扫描的方式来使其工作良好;而动态扫描将或多或少的阻止了MCU处理其他的事情。在MCU负担很重的场合,我会选择选用一个类似max8279外围ic来解决这个困扰;
然而庆幸的是,有着许多不是对时间要求苛刻的事情:
例如键盘的扫描,人们敲击键盘的速率是有限的,我们无需实时扫描着键盘,甚至可以每隔几十ms才去扫描一下;然而这个几十ms的间隔,我们的MCU还可以完成许多的事情;
单片机虽然是裸机奔跑,但是往往现实的需要决定了我们必须跑出操作系统的姿态——多任务程序;
比如一个常用的情况有4个任务:
1 键盘扫描;
2 led数码管显示;
3 串口数据需要接受和处理;
4 串口需要发送数据;
如何来构架这个单片机的程序将是我们的重点;
读书时代的我会把键盘扫描用查询的方式放在主循环中,而串口接收数据用中断,在中断服务函数中组成相应的帧格式后置位相应的标志位,在主函数的循环中进行数据的处理,串口发送数据以及led的显示也放在主循环中;
这样整个程序就以标志变量的通信方式,相互配合的在主循环和后台中断中执行;
然而必须指出其不妥之处:
每个任务的时间片可能过长,这将导致程序的实时性能差。如果以这样的方式在多加几个任务,使得一个循环的时间过长,可能键盘扫描将很不灵敏。所以若要建立一个良好的通用编程模型,我们必须想办法,消去每个任务中费时间的部分以及把每个任务再次分解;下面来细谈每个任务的具体措施:
1 键盘扫描
键盘扫描是单片机的常用函数,以下指出常用的键盘扫描程序中,严重阻碍系统实时性能的地方;
众所周知,一个键按下之后的波形是这样的(假定低有效):
在有键按下后,数据线上的信号出现一段时间的抖动,然后为低,然后当按键释放时,信号抖动一段时间后变高。当然,在数据线为低或者为高的过程中,都有可能出现一些很窄的干扰信号。
unsigned char kbscan(void)
{
unsigned char sccode,recode;
P2=0xf8;
if ((P2&0xf8)!=0xf8)
{
delay(100); //延时20ms去抖--------这里太费时了,很糟糕
if((P2&0xf8)!=0xf8)
{
sccode=0xfe;
while((sccode&0x08)!=0)
{
P2=sccode;
if ((P2&0xf8)!=0xf8)
break;
sccode=(sccode<<1)|0x01;
}
recode=(P2&0xf8)|0x0f;
return(sccode&recode);
}
}
return (KEY_NONE);
}
键盘扫描是需要软件去抖的,这没有争议,然而该函数中用软件延时来去抖(ms级别的延时),这是一个维持系统实时性能的一个大忌讳;
一般还有一个判断按键释放的代码:
While( kbscan() != KEY_NONE)
; //死循环等待
这样很糟糕,如果把键盘按下一直不放,这将导致整个系统其它的任务也不能执行,这将是个很严重的bug。
有人会这样进行处理:
While(kbsan() != KEY_NONE )
{
Delay(10);
If(Num++ > 10)
Break;
}
即在一定得时间内,如果键盘一直按下,将作为有效键处理。这样虽然不导致整个系统其它任务不能运行,但也很大程度上,削弱了系统的实时性能,因为他用了延时函数;
[page]
我们用两种有效的方法来解决此问题:
1 在按键功能比较简单的情况下,我们仍然用上面的kbscan()函数进行扫描,只是把其中去抖用的软件延时去了,把去抖以及判断按键的释放用一个函数来处理,它不用软件延时,而是用定时器的计时(用一般的计时也行)来完成;代码如下
void ClearKeyFlag(void)
{
KeyDebounceFlg = 0;
KeyReleaseFlg = 0;
}
void ScanKey(void)
{
++KeyDebounceCnt;//去抖计时(这个计时也可以放在后台定时器计时函数中处理)
KeyCode = kbscan();
if (KeyCode != KEY_NONE)
{
if (KeyDebounceFlg)//进入去抖状态的标志位
{
if (KeyDebounceCnt > DEBOUNCE_TIME)//大于了去抖规定的时间
{
if (KeyCode == KeyOldCode)//按键依然存在,则返回键值
{
KeyDebounceFlg = 0;
KeyReleaseFlg = 1;//释放标志
return; //Here exit with keycode
}
ClearKeyFlag(); //KeyCode != KeyOldCode,只是抖动而已
}
}else{
if (KeyReleaseFlg == 0)
{
KeyOldCode = KeyCode;
KeyDebounceFlg = 1;
KeyDebounceCnt = 0;
}else{
if (KeyCode != KeyOldCode)
ClearKeyFlag();
}
}
}else{
ClearKeyFlag();//没有按键则清零标志
}
KeyCode = KEY_NONE;
}
在按键情况较复杂的情况,如有长按键,组合键,连键等一些复杂功能的按键时候,我们跟倾向于用状态机来实现键盘的扫描;
//avr 单片机 中4*3扫描状态机实现
char read_keyboard_FUN2()
{
static char key_state = 0, key_value, key_line,key_time;
char key_return = No_key,i;
switch (key_state)
{
case 0: //最初的状态,进行3*4的键盘扫描
key_line = 0b00001000;
for (i=1; i<=4; i++) // 扫描键盘
{
PORTD = ~key_line; // 输出行线电平
PORTD = ~key_line; // 必须送2次!!!(注1)
key_value = Key_mask & PIND; // 读列电平
if (key_value == Key_mask)
key_line <<= 1; // 没有按键,继续扫描
else
{
key_state++; // 有按键,停止扫描
break; // 转消抖确认状态
}
}
break;
case 1: //此状态来判断按键是不是抖动引起的
if (key_value == (Key_mask & PIND)) // 再次读列电平,
{
key_state++; // 转入等待按键释放状态
key_time=0;
}
else
key_state--; // 两次列电平不同返回状态0,(消抖处理)
break;
case 2: // 等待按键释放状态
PORTD = 0b00000111; // 行线全部输出低电平
PORTD = 0b00000111; // 重复送一次
if ( (Key_mask & PIND) == Key_mask)
{
key_state=0; // 列线全部为高电平返回状态0
key_return= (key_line | key_value);//获得了键值
}
else if(++key_time>=100)//如果长时间没有释放
{
key_time=0;
key_state=3;//进入连键状态
key_return= (key_line | key_value);
}
break;
case 3://对于连键,每隔50ms就得到一次键值,windows xp 系统就是这样做的
PORTD = 0b00000111; // 行线全部输出低电平
PORTD = 0b00000111; // 重复送一次
if ( (Key_mask & PIND) == Key_mask)
key_state=0; // 列线全部为高电平返回状态0
else if(++key_time>=5) //每隔50MS为一次连击的按键
{
key_time=0;
key_return= (key_line | key_value);
}
break;
}
return key_return;
}
以上用了4个状态,一般的键盘扫描只用前面3个状态就可以了,后面一个状态是为增加“连键”功能设计的。连键——即如果按下某个键不放,则迅速的多次响应该键值,直到其释放。在主循环中每隔10ms让该键盘扫描函数执行一次即可;我们定其时限为10ms,当然要求并不严格。
2 数码管的显示
一般情况下我们用的八位一体的数码管,采用动态扫描的方法来完成显示;非常庆幸人眼在高于50hz以上的闪烁时发现不了的。所以我们在动态扫描数码管的间隔时间是充裕的。这里我们定其时限为4ms(250HZ) ,用定时器定时为2ms,在定时中断程序中进行扫描的显示,每次只显示其中的一位;当然时限也可以弄长一些,更推荐的方法是把显示函数放入主循环中,而定时中断中置位相应的标志位即可;
// Timer 0 比较匹配中断服务,4ms定时
interrupt [TIM0_COMP] void timer0_comp_isr(void)
{
display(); // 调用LED扫描显示
……………………
}
void display(void) // 8位LED数码管动态扫描函数
{
PORTC = 0xff; // 这里把段选都关闭是很必要的,否则数码管会产生拖影
PORTA = led_7[dis_buff[posit]];
PORTC = position[posit];
if (++posit >=8 )
posit = 0;
}
3 串口接收数据帧
串口接收时用中断方式的,这无可厚非。但如果你试图在中断服务程序中完成一帧数据的接收就麻烦大了。永远记住,中断服务函数越短越好,否则影响这个程序的实时性能。一个数据帧一般包括若干个字节,我们需要判断一帧是否完成,校验是否正确。在这个过程中我们不能用软件延时,更不能用死循环等待等方式;
所以我们在串口接收中断函数中,只是把数据放置于一个缓冲队列中。
至于组成帧,以及检查帧的工作我们在主循环中解决,并且每次循环中我们只处理一个数据,每个字节数据的处理间隔的弹性比较大,因为我们已经缓存在了队列里面。
void UARTimeEvent(void)
{
if (TxTimer != 0)//发送需要等待的时间递减
--TxTimer;
if (++RxTimer > RX_FRAME_RESET) //
RxCnt = 0; //如果接受超时(即不完整的帧或者接收一帧完成),把接收的不完整帧覆盖
}
interrupt [USART_RXC] void uart_rx_isr(void)
{
INT8U status,data;
status = UCSRA;
data = UDR;
if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0){
RxBuf[RxBufWrIdx] = data;
if (++RxBufWrIdx == RX_BUFFER_SIZE) //接收数据于缓冲中
RxBufWrIdx = 0;
if (++RxBufCnt == RX_BUFFER_SIZE){
RxBufCnt = 0;
//RxBufferOvf=1;
}
}
}
[page]
INT8U ChkRxFrame(void)
{
INT8U dat;
INT8U cnt;
INT8U sum;
INT8U ret;
ret = RX_NULL;
if (RxBufCnt != 0){
RxTimer = 0; //清接收计数时间,UARTimeEvent()中对于接收超时做了放弃整帧数据的处理
//Display();
cnt = RxCnt;
dat = RxBuf[RxBufRdIdx]; // Get Char
if (++RxBufRdIdx == RX_BUFFER_SIZE)
RxBufRdIdx = 0;
Cli();
--RxBufCnt;
Sei();
FrameBuf[cnt++] = dat;
if (cnt >= FRAME_LEN)// 组成一帧
{
sum = 0;
for (cnt = 0;cnt < (FRAME_LEN - 1);cnt++)
sum+= FrameBuf[cnt];
if (sum == dat)
ret = FrameBuf[0];
cnt = 0;
}
RxCnt = cnt;
}
return ret;
}
以上的代码ChkRxFrame()可以放于串口接收数据处理函数RxProcess() 中,然后放入主循环中执行即可。以上用一个计时变量RxTimer,很微妙的解决了接收帧超时的放弃帧处理,它没有用任何等待,而且主循环中每次只是接收一个字节数据,时间很短。
我们开始架构整个系统的框架:
我们选用一个系统不常用的TIMER来产生系统所需的系统基准节拍,这里我们选用4ms;
在meg8中我们代码如下:
// Timer 0 overflow interrupt service routine
interrupt [TIM0_OVF] void timer0_ovf_isr(void)
{
// Reinitialize Timer 0 value
TCNT0=0x83;
// Place your code here
if ((++Time1ms & 0x03) == 0)
TimeIntFlg = 1;
}
然后我们设计一个TimeEvent()函数,来调用一些在以指定的频率需要循环调用的函数,
比如每个4ms我们就进行喂狗以及数码管动态扫描显示,每隔1s我们就调用led闪烁程序,每隔20ms我们进行键盘扫描程序;
void TimeEvent (void)
{
if (TimeIntFlg){
TimeIntFlg = 0;
ClearWatchDog();
display(); // 在4ms事件中,调用LED扫描显示,以及喂狗
if (++Time4ms > 5){
Time4ms = 0;
TimeEvent20ms();//在20ms事件中,我们处理键盘扫描read_keyboard_FUN2()
if (++Time100ms > 10){
Time100ms = 0;
TimeEvent1Hz();// 在1s事件中,我们使工作指示灯闪烁
}
}
UARTimeEvent();//串口的数据接收事件,在4ms事件中处理
}
}
显然整个思路已经很清晰了,cpu需要处理的循环事件都可以根据其对于时间的要求很方便的加入该函数中。但是我们对这事件有要求:
执行速度快,简短,不能有太长的延时等待,其所有事件一次执行时间和必须小于系统的基准时间片4ms(根据需要可以加大系统基准节拍)。所以我们的键盘扫描程序,数码管显示程序,串口接收程序都如我先前所示。如果逼不得已需要用到较长的延时(如模拟IIc时序中用到的延时)
我们设计了这样的延时函数:
void RunTime250Hz (INT8U delay)//此延时函数的单位为4ms(系统基准节拍)
{
while (delay){
if (TimeIntFlg){
--delay;
TimeEvent();
}
TxProcess();
RxProcess();
}
}
我们需要延时的时间=delay*系统记住节拍4ms,此函数就确保了在延时的同时,我们其它事件(键盘扫描,led显示等)也并没有被耽误;
好了这样我们的主函数main()将很简短:
Void main (voie)
{
Init_all();
while (1)
{
TimeEvent(); //对于循环事件的处理
RxProcess(); //串口对接收的数据处理
TxProcess();// 串口发送数据处理
}
}
整体看来我们的系统就成了将近一个万能的模版了,根据自己所选的cpu,选个定时器,在添加自己的事件函数即可,非常灵活方便实用,一般的单片机能胜任的场合,该模版都能搞定。
整个系统以全局标志作为主线,形散神不散;系统耗费比较小,只是牺牲了一个Timer而已,在资源缺乏的单片机中,非常适;曾经看过一个网友的模版“单片机实用系统”,其以51为例子写的,整体思路和这个差不多,不过他写得更为规范紧凑,非常欣赏;但个人觉得代码开销量要大些,用惯了都一样哦。但是由于本系统以全局标志为驱动事件,所以比较感觉比较凌乱,全局最好都做好注释,而其要注意一些隐形的函数递归情况,千万不要递归的太深哦(有的单片机不支持)。
单片机使用系统
关键字:单片机 程序框架
引用地址:
单片机的程序框架
推荐阅读最新更新时间:2024-03-16 14:29
C8051F020单片机在总磷在线自动分析仪中应用
1 概述 C8051FOXX系列单片机是Cygnal公司新推出的一种混合信号系统级单片机。该系列单片机片内含CIP-51的CPU内核,它的指令系统与MCs-51完全兼容。其中的C8051F020 单片机含有64kB片内Flash程序存储器,4352B的RAM、8个I/O端口共64根I/O口线、一个12位A/D转换器和一个8位A/D转换器以及一个双12位D/A转换器、2个比较器、5个16位通用定时器、5个捕捉/比较模块的可编程计数/定时器阵列、看门狗定时器、VDD监视器和温度传感器等部分。C8051F020单片机支持双时钟,其工作电压范围为2.7-3.6V(端口I/O,RsT和JTAC引脚的耐压为5V)。与以前的51系列单片机相比,
[单片机]
51单片机-----------四向交通灯
一 实验目的: 实验4:运用AT89C51芯片实现四向交通灯: (1) 掌握C语言编程单片机控制程序的方法。 (2) 掌握使用Keil4软件编写、编译、调试程序的方法。 (3) 掌握使用Proteus软件绘制电路原理图、硬件仿真和程序调试。 (4) 理解和掌握共阴极数码管的显示原理和编码(记忆)。 (5) 熟悉使用51单片机I/O端口实现对外部用电器和电路的控制。 二、实验硬件和软件: 计算机1台、并安装Proteus8.6软件和Keil4软件。 Proteus8.6中会运用的部件:7SEG-MPX2-CC、AT89C51、BUTTON、LED-GREENREDYELLOW、RESPACK-8d 三、试验任务: 1.
[单片机]
以C51单片机为核心的嵌入式系统实时控制设计
随着现代通信技术的发展,通信测试仪器不断推陈出新。各种新型设备对系统的实时响应能力的要求越来越高,一种通信测试仪器的实时响应性能,就成为系统设计能否成功的关键因素之一。笔者曾在多个通信测试仪器项目中,成功地应用ARM处理器、C51单片机等为主控芯片的嵌入式系统,实现了对仪器相关模块的实时控制功能。因此提出一种在某通信测试仪器中使用C51单片机来实现实时控制的设计方案。 1 硬件设计与实现 1.1 总体方案设计 在该通信测试仪器中,实时控制模块主要实现对射频接收频综、射频发生频综、滤波器组件、射频输入模块、射频输出模块等实时控制作用。对射频检波信号进行A/D转换以获取数据。与上位计算机进行通信等功能。 根据待实现的系统功能要
[单片机]
用87C196NT单片机实现CAN总线通信
摘要: 主要介绍CAN总线的原理及如何用87C196NT单片机实现基于CAN总线的网络通信;对其硬件和软件设计作详细的分析,最后给出下位机程序。
关键词: 单片机 CAN总线 87C196NT PCA82C200
1 CAN总线简介
CAN(Controller Area Network)即控制器局域网,主要用于各种设备监测及控制的一种现场总线。CAN总线最初是由德国Bosch公司为汽车的监测、控制系统而设计的。CAN总线具有独特的设计思想,良好的功能特性和极高的可靠性,现场抗干扰能力强。具体来讲,CAN总线具有如下特点:
*结构简单,只有2根线与外部相连,且内部含有错误探测和管理模块
[应用]
51单片机综合学习系统之 步进电机控制篇
大家好,通过以前的学习,我们已经对51单片机综合学习系统的使用方法及学习方式有所了解与熟悉,学会了红外线遥控的基本知识,体会到了综合学习系统的易用性与易学性,这一期我们将一起学习步进电机控制的基本原理与使用方法。 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见
[单片机]
基于PIC单片机的防伪包装技术
简介:文中提出将PIC单片机技术和密码学原理应用到防伪包装领域;介绍一种可控密码防伪包装技术的结构特点、作用原理及实际防伪效果。 由于假冒伪劣商品高额利润的驱使,市场上制假、售假现象屡禁不尽,严重地影响社会经济的正常发展。固然商品生产厂家为保护自身利益不受侵害,不断地推出防伪包装技术,如激光防伪商标、多重结构防伪包装等,但仍无法有效地遏止假冒伪劣商品的大量涌现。分析原因,这些方法的共同特点都是依靠增加包装结构的复杂性,试图通过进步包装制造难度达到防伪目的。事实上,在如今先进的制造技术条件下,无论多复杂的结构造假者跟随仿冒也是轻而易举的。近年来,人们又不断地应用高新技术成果研制开发出各种新型防伪技术,如信息网络防伪技术、原子核双
[单片机]
51单片机数字时钟仿真(LCD1602液晶显示)+源程序+电路原理图
下面是51单片机数字时钟程序: #include AT89X52.h #define DSbus P0 #define LCDbus P1 //定义DS12C887和LCD的控制线 sbit DS_CS = P2^7; //引脚13,片选信号输入,低电平有效。 sbit DS_AS = P2^4; //引脚14,地址选通输入。 sbit DS_RW = P2^5; //引脚15,读/写输入。 sbit DS_DS = P2^6; //引脚17,数据选通或读输入。 sbit LCD_RS=P2^0; sbit LCD_EN=P2^2; //时间变量定义 unsigned char Counter; u
[单片机]
详解STM32单片机堆栈
学习STM32单片机的时候,总是能遇到“堆栈”这个概念。分享本文,希望对你理解堆栈有帮助。 对于了解一点汇编编程的人,就可以知道,堆栈是内存中一段连续的存储区域,用来保存一些临时数据。堆栈操作由PUSH、POP两条指令来完成。而程序内存可以分为几个区: 栈区(stack) 堆区(Heap) 全局区(static) 文字常亮区程序代码区 程序编译之后,全局变量,静态变量已经分配好内存空间,在函数运行时,程序需要为局部变量分配栈空间,当中断来时,也需要将函数指针入栈,保护现场,以便于中断处理完之后再回到之前执行的函数。 栈是从高到低分配,堆是从低到高分配。 普通单片机与STM32单片机中堆栈的区别 普通单片机启动时,不需要用b
[单片机]