STM32访问外部存储器-NOR-Flash

发布者:火星叔叔最新更新时间:2018-09-20 来源: eefocus关键字:STM32  访问外部存储器  NOR-Flash 手机看文章 扫描二维码
随时随地手机看文章

基本说明


STM32访问外部存储器是需要配置FSMC的相关函数,在STM32固件库函数说明的中文翻译版中并没有这部分的说明,因此需要参考库函数的相关说明和库中自带的例程。


以下内容来自AN2784应用笔记:


2 与非总线复用模式的异步16位NOR闪存接口


2.1


FSMC配置


控制一个NOR闪存存储器,需要FSMC提供下述功能:



选择合适的存储块映射NOR闪存存储器:共有4个独立的存储块可以用于与NOR闪存、SRAM和PSRAM存储器接口,每个存储块都有一个专用的片选管脚。



使用或禁止地址/数据总线的复用功能。



选择所用的存储器类型:NOR闪存、SRAM或PSRAM。



定义外部存储器的数据总线宽度:8或16位。



使用或关闭同步NOR闪存存储器的突发访问模式。



配置等待信号的使用:开启或关闭,极性设置,时序配置。



使用或关闭扩展模式:扩展模式用于访问那些具有不同读写操作时序的存储器。


因为NOR闪存/SRAM控制器可以支持异步和同步存储器,用户只须根据存储器的参数配置使用到的参数。


FSMC提供了一些可编程的参数,可以正确地与外部存储器接口。依存储器类型的不同,有些参数是不需要的。


当使用一个外部异步存储器时,用户必须按照存储器的数据手册给出的时序数据,计算和设置下列参数:



ADDSET:地址建立时间



ADDHOLD:地址保持时间



DATAST:数据建立时间



ACCMOD:访问模式 这个参数允许 FSMC可以灵活地访问多种异步的静态存储器。共有4种扩展模式允许以不同的时序分别读写存储器。 在扩展模式下,FSMC_BTR用于配置读操作,FSMC_BWR用于配置写操作。(译注:如果读时序与写时序相同,只须使用FSMC_BTR即可。)


如果使用了同步的存储器,用户必须计算和设置下述参数:



CLKDIV:时钟分频系数



DATLAT:数据延时


如果存储器支持的话,NOR闪存的读操作可以是同步的,而写操作仍然是异步的。


当对一个同步的NOR闪存编程时,存储器会自动地在同步与异步之间切换;因此,必须正确地设置所有的参数


 


 


 


程序分析


[cpp] view plaincopy

 /*-- FSMC Configuration ----------------------------------------------------*/  

  p.FSMC_AddressSetupTime = 0x05;     /*ADDSET  地址建立时间*/  

  p.FSMC_AddressHoldTime = 0x00;    /*ADDHOLD 地址保持时间*/  

  p.FSMC_DataSetupTime = 0x07;     /*DATAST 数据建立时间*/  

  p.FSMC_BusTurnAroundDuration = 0x00;   /*BUSTURN 总线返转时间*/  

  p.FSMC_CLKDivision = 0x00;      /*CLKDIV 时钟分频*/  

  p.FSMC_DataLatency = 0x00;     /*DATLAT 数据保持时间*/  

  p.FSMC_AccessMode = FSMC_AccessMode_B;   /*访问模式*/  

/*NOR/SRAM的存储块,共4个选项*/  

  FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM2;      

/*是否选择地址和数据复用数据线*/  

  FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;    

/*连接到相应存储块的外部存储器类型*/  

  FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_NOR;     

/*存储器数据总线宽度*/  

  FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;    

/*使能或关闭同步NOR闪存存储器的突发访问模式设置是否使用迸发访问模式(应该就是连续读写模式吧)*/  

  FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;     

/*设置WAIT信号的有效电平*/  

  FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;     

 /*设置是否使用环回模式*/  

  FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;      

/*设置WAIT信号有效时机*/  

  FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;   

/*设定是否使能写操作*/  

  FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;    

/*设定是否使用WAIT信号*/  

  FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;     

/*使能或关闭扩展模式,扩展模式用于访问具有不同读写操作时序的存储器,设定是否使用单独的写时序*/       

  FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;    

/*设定是否使用异步等待信号*/  

  FSMC_NORSRAMInitStructure.FSMC_AsyncWait = FSMC_AsyncWait_Disable;    

/*设定是否使用迸发写模式*/    

  FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;    

 /*设定读写时序*/  

  FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;    //       

  FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;    //  

                   

  FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);        //  

  /* Enable FSMC Bank1_NOR Bank */  

  FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);        //  

}  

 

实际例程


以下例程来自  stm3210e_eval_fsmc_nor.c具体信息参加固件库中源文件。



[c-sharp] view plaincopy

/** 

  ****************************************************************************** 

  * @file    stm3210e_eval_fsmc_nor.c 

  * @author  MCD Application Team 

  * @version V4.3.0 

  * @date    10/15/2010 

  * @brief   This file provides a set of functions needed to drive the M29W128FL,  

  *          M29W128GL and S29GL128P NOR memories mounted on STM3210E-EVAL board. 

  ****************************************************************************** 

  * @copy 

  * 

  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS 

  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE 

  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY 

  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING 

  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE 

  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. 

  * 

  *

© COPYRIGHT 2010 STMicroelectronics

 

  */   

/* Includes ------------------------------------------------------------------*/  

#include "stm3210e_eval_fsmc_nor.h"  

/** @addtogroup Utilities 

  * @{ 

  */  

    

/** @addtogroup STM32_EVAL 

  * @{ 

  */   

/** @addtogroup STM3210E_EVAL 

  * @{ 

  */  

    

/** @addtogroup STM3210E_EVAL_FSMC_NOR 

  * @brief      This file provides a set of functions needed to drive the M29W128FL,  

  *             M29W128GL and S29GL128P NOR memories mounted on STM3210E-EVAL board. 

  * @{ 

  */   

/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Types 

  * @{ 

  */   

/** 

  * @} 

  */   

/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Defines 

  * @{ 

  */   

/**  

  * @brief  FSMC Bank 1 NOR/SRAM2   

  */  

#define Bank1_NOR2_ADDR       ((uint32_t)0x64000000)  

/* Delay definition */     

#define BlockErase_Timeout    ((uint32_t)0x00A00000)  

#define ChipErase_Timeout     ((uint32_t)0x30000000)   

#define Program_Timeout       ((uint32_t)0x00001400)       

/** 

  * @} 

  */   

  

/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Macros 

  * @{ 

  */  

#define ADDR_SHIFT(A) (Bank1_NOR2_ADDR + (2 * (A)))  

#define NOR_WRITE(Address, Data)  (*(__IO uint16_t *)(Address) = (Data))    

/** 

  * @} 

  */   

    

/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Variables 

  * @{ 

  */   

/** 

  * @} 

  */   

  

/** @defgroupSTM3210E_EVAL_FSMC_NOR_Private_Function_Prototypes 

  * @{ 

  */   

/** 

  * @} 

  */   

  

/** @defgroup STM3210E_EVAL_FSMC_NOR_Private_Functions 

  * @{ 

  */  

/** 

  * @brief  Configures the FSMC and GPIOs to interface with the NOR memory. 

  *         This function must be called before any write/read operation 

  *         on the NOR. 

  * @param  None 

  * @retval None 

  */  

void NOR_Init(void)  

{  

  FSMC_NORSRAMInitTypeDef  FSMC_NORSRAMInitStructure;  

  FSMC_NORSRAMTimingInitTypeDef  p;  

  GPIO_InitTypeDef GPIO_InitStructure;  

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |   

                         RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);  

  /*-- GPIO Configuration ------------------------------------------------------*/  

  /*!< NOR Data lines configuration */  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |  

                                GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;  

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  

  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  

  GPIO_Init(GPIOD, &GPIO_InitStructure);  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |  

                                GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 |  

                                GPIO_Pin_14 | GPIO_Pin_15;  

  GPIO_Init(GPIOE, &GPIO_InitStructure);  

  /*!< NOR Address lines configuration */  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |  

                                GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |  

                                GPIO_Pin_14 | GPIO_Pin_15;  

  GPIO_Init(GPIOF, &GPIO_InitStructure);  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 |  

                                GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;  

  GPIO_Init(GPIOG, &GPIO_InitStructure);  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13;  

  GPIO_Init(GPIOD, &GPIO_InitStructure);  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6;  

  GPIO_Init(GPIOE, &GPIO_InitStructure);  

  /*!< NOE and NWE configuration */  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;  

  GPIO_Init(GPIOD, &GPIO_InitStructure);  

  /*!< NE2 configuration */  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;  

  GPIO_Init(GPIOG, &GPIO_InitStructure);  

  /*!< Configure PD6 for NOR memory Ready/Busy signal */  

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;  

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;  

  GPIO_Init(GPIOD, &GPIO_InitStructure);  

    

  /*-- FSMC Configuration ----------------------------------------------------*/  

  p.FSMC_AddressSetupTime = 0x02;  

  p.FSMC_AddressHoldTime = 0x00;  

  p.FSMC_DataSetupTime = 0x05;  

  p.FSMC_BusTurnAroundDuration = 0x00;  

  p.FSMC_CLKDivision = 0x00;  

  p.FSMC_DataLatency = 0x00;  

  p.FSMC_AccessMode = FSMC_AccessMode_B;  

  FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM2;  

  FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;  

  FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_NOR;  

  FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;  

  FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;  

  FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;    

  FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;  

  FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;  

  FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;  

  FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;  

  FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;  

  FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;  

  FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;  

  FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;  

  FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;  

  FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);  

  /*!< Enable FSMC Bank1_NOR Bank */  

  FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);  

}  

/** 

  * @brief  Reads NOR memory's Manufacturer and Device Code. 

  * @param  NOR_ID: pointer to a NOR_IDTypeDef structure which will hold the  

  *         Manufacturer and Device Code.   

  * @retval None 

  */  

void NOR_ReadID(NOR_IDTypeDef* NOR_ID)  

{  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x0090);  

  NOR_ID->Manufacturer_Code = *(__IO uint16_t *) ADDR_SHIFT(0x0000);  

  NOR_ID->Device_Code1 = *(__IO uint16_t *) ADDR_SHIFT(0x0001);  

  NOR_ID->Device_Code2 = *(__IO uint16_t *) ADDR_SHIFT(0x000E);  

  NOR_ID->Device_Code3 = *(__IO uint16_t *) ADDR_SHIFT(0x000F);  

}  

/** 

  * @brief  Erases the specified Nor memory block. 

  * @param  BlockAddr: address of the block to erase. 

  * @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR 

  *         or NOR_TIMEOUT 

  */  

NOR_Status NOR_EraseBlock(uint32_t BlockAddr)  

{  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x0080);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE((Bank1_NOR2_ADDR + BlockAddr), 0x30);  

  return (NOR_GetStatus(BlockErase_Timeout));  

}  

/** 

  * @brief  Erases the entire chip. 

  * @param  None                       

  * @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR 

  *         or NOR_TIMEOUT 

  */  

NOR_Status NOR_EraseChip(void)  

{  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x0080);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x0010);  

  return (NOR_GetStatus(ChipErase_Timeout));  

}  

/** 

  * @brief  Writes a half-word to the NOR memory. 

  * @param  WriteAddr: NOR memory internal address to write to. 

  * @param  Data: Data to write.  

  * @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR 

  *         or NOR_TIMEOUT 

  */  

NOR_Status NOR_WriteHalfWord(uint32_t WriteAddr, uint16_t Data)  

{  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00A0);  

  NOR_WRITE((Bank1_NOR2_ADDR + WriteAddr), Data);  

  return (NOR_GetStatus(Program_Timeout));  

}  

/** 

  * @brief  Writes a half-word buffer to the FSMC NOR memory.  

  * @param  pBuffer: pointer to buffer.  

  * @param  WriteAddr: NOR memory internal address from which the data will be  

  *         written. 

  * @param  NumHalfwordToWrite: number of Half words to write.  

  * @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR 

  *         or NOR_TIMEOUT 

  */  

NOR_Status NOR_WriteBuffer(uint16_t* pBuffer, uint32_t WriteAddr, uint32_t NumHalfwordToWrite)  

{  

  NOR_Status status = NOR_ONGOING;   

  do  

  {  

    /*!< Transfer data to the memory */  

    status = NOR_WriteHalfWord(WriteAddr, *pBuffer++);  

    WriteAddr = WriteAddr + 2;  

    NumHalfwordToWrite--;  

  }  

  while((status == NOR_SUCCESS) && (NumHalfwordToWrite != 0));  

    

  return (status);   

}  

/** 

  * @brief  Writes a half-word buffer to the FSMC NOR memory. This function  

  *         must be used only with S29GL128P NOR memory. 

  * @param  pBuffer: pointer to buffer.  

  * @param  WriteAddr: NOR memory internal address from which the data will be  

  *         written. 

  * @param  NumHalfwordToWrite: number of Half words to write. 

  *         The maximum allowed value is 32 Half words (64 bytes). 

  * @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR 

  *         or NOR_TIMEOUT 

  */  

NOR_Status NOR_ProgramBuffer(uint16_t* pBuffer, uint32_t WriteAddr, uint32_t NumHalfwordToWrite)  

{  

  uint32_t lastloadedaddress = 0x00;  

  uint32_t currentaddress = 0x00;  

  uint32_t endaddress = 0x00;  

  /*!< Initialize variables */  

  currentaddress = WriteAddr;  

  endaddress = WriteAddr + NumHalfwordToWrite - 1;  

  lastloadedaddress = WriteAddr;  

  /*!< Issue unlock command sequence */  

  NOR_WRITE(ADDR_SHIFT(0x00555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);    

  /*!< Write Write Buffer Load Command */  

  NOR_WRITE(ADDR_SHIFT(WriteAddr), 0x0025);  

  NOR_WRITE(ADDR_SHIFT(WriteAddr), (NumHalfwordToWrite - 1));  

  /*!< Load Data into NOR Buffer */  

  while(currentaddress <= endaddress)  

  {  

    /*!< Store last loaded address & data value (for polling) */  

    lastloadedaddress = currentaddress;  

   

    NOR_WRITE(ADDR_SHIFT(currentaddress), *pBuffer++);  

    currentaddress += 1;   

  }  

  NOR_WRITE(ADDR_SHIFT(lastloadedaddress), 0x29);  

    

  return(NOR_GetStatus(Program_Timeout));  

}  

/** 

  * @brief  Reads a half-word from the NOR memory.  

  * @param  ReadAddr: NOR memory internal address to read from. 

  * @retval Half-word read from the NOR memory 

  */  

uint16_t NOR_ReadHalfWord(uint32_t ReadAddr)  

{  

  NOR_WRITE(ADDR_SHIFT(0x00555), 0x00AA);   

  NOR_WRITE(ADDR_SHIFT(0x002AA), 0x0055);    

  NOR_WRITE((Bank1_NOR2_ADDR + ReadAddr), 0x00F0 );  

  return (*(__IO uint16_t *)((Bank1_NOR2_ADDR + ReadAddr)));  

}  

/** 

  * @brief  Reads a block of data from the FSMC NOR memory. 

  * @param  pBuffer: pointer to the buffer that receives the data read from the  

  *         NOR memory. 

  * @param  ReadAddr: NOR memory internal address to read from. 

  * @param  NumHalfwordToRead : number of Half word to read. 

  * @retval None 

  */  

void NOR_ReadBuffer(uint16_t* pBuffer, uint32_t ReadAddr, uint32_t NumHalfwordToRead)  

{  

  NOR_WRITE(ADDR_SHIFT(0x0555), 0x00AA);  

  NOR_WRITE(ADDR_SHIFT(0x02AA), 0x0055);  

  NOR_WRITE((Bank1_NOR2_ADDR + ReadAddr), 0x00F0);  

  for(; NumHalfwordToRead != 0x00; NumHalfwordToRead--) /*!< while there is data to read */  

  {  

    /*!< Read a Halfword from the NOR */  

    *pBuffer++ = *(__IO uint16_t *)((Bank1_NOR2_ADDR + ReadAddr));  

    ReadAddr = ReadAddr + 2;   

  }    

}  

/** 

  * @brief  Returns the NOR memory to Read mode. 

  * @param  None 

  * @retval NOR_SUCCESS 

  */  

NOR_Status NOR_ReturnToReadMode(void)  

{  

  NOR_WRITE(Bank1_NOR2_ADDR, 0x00F0);  

  return (NOR_SUCCESS);  

}  

/** 

  * @brief  Returns the NOR memory to Read mode and resets the errors in the NOR  

  *         memory Status Register.   

  * @param  None 

  * @retval NOR_SUCCESS 

  */  

NOR_Status NOR_Reset(void)  

{  

  NOR_WRITE(ADDR_SHIFT(0x00555), 0x00AA);   

  NOR_WRITE(ADDR_SHIFT(0x002AA), 0x0055);   

  NOR_WRITE(Bank1_NOR2_ADDR, 0x00F0);   

  return (NOR_SUCCESS);  

}  

/** 

  * @brief  Returns the NOR operation status. 

  * @param  Timeout: NOR progamming Timeout 

  * @retval NOR_Status: The returned value can be: NOR_SUCCESS, NOR_ERROR 

  *         or NOR_TIMEOUT 

  */  

NOR_Status NOR_GetStatus(uint32_t Timeout)  

{   

  uint16_t val1 = 0x00, val2 = 0x00;  

  NOR_Status status = NOR_ONGOING;   

  uint32_t timeout = Timeout;  

  /*!< Poll on NOR memory Ready/Busy signal ----------------------------------*/  

  while((GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_6) != RESET) && (timeout > 0))   

  {  

    timeout--;  

  }  

  timeout = Timeout;  

    

  while((GPIO_ReadInputDataBit(GPIOD, GPIO_Pin_6) == RESET) && (timeout > 0))     

  {  

    timeout--;  

  }  

    

  /*!< Get the NOR memory operation status -----------------------------------*/  

  while((Timeout != 0x00) && (status != NOR_SUCCESS))  

  {  

    Timeout--;  

    /*!< Read DQ6 and DQ5 */  

    val1 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);  

    val2 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);  

    /*!< If DQ6 did not toggle between the two reads then return NOR_Success */  

    if((val1 & 0x0040) == (val2 & 0x0040))   

    {  

      return NOR_SUCCESS;  

    }  

    if((val1 & 0x0020) != 0x0020)  

    {  

      status = NOR_ONGOING;  

    }  

    val1 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);  

    val2 = *(__IO uint16_t *)(Bank1_NOR2_ADDR);  

      

    if((val1 & 0x0040) == (val2 & 0x0040))   

    {  

      return NOR_SUCCESS;  

    }  

    else if((val1 & 0x0020) == 0x0020)  

    {  

      return NOR_ERROR;  

    }  

  }  

  if(Timeout == 0x00)  

  {  

    status = NOR_TIMEOUT;  

  }   

  /*!< Return the operation status */  

  return (status);  

}  

/** 

  * @} 

  */  

/** 

  * @} 

  */  

/** 

  * @} 

  */  

/** 

  * @} 

  */  

/** 

  * @} 

  */    

/******************* (C) COPYRIGHT 2010 STMicroelectronics *****END OF FILE****/ 


关键字:STM32  访问外部存储器  NOR-Flash 引用地址:STM32访问外部存储器-NOR-Flash

上一篇:STM32(Cortex-M3)中优先级的概念
下一篇:STM32外设使用要点

推荐阅读最新更新时间:2024-03-16 16:14

STM32基础13--直接存储器访问(DMA)
前言 DMA(Direct Memory Access,直接存储器访问) ,它就是字面的意思,直接的内存访问,不需要通过CPU即可对相关地址的内存进行直接访问。 这样子说有点抽象,不太容易理解,但是如果在学51单片机汇编,就知道当我们对某个值进行赋值操作时,是CPU使用MOV指令对某个地址赋值(MOV direct, XXX ,将XXX送入地址中的内存)。DMA的意思就是我们可以不通过CPU执行指令,直接通过DMA硬件进行数据的交互。 咋一看,好像也没啥作用,如果没有DMA在传输大量的数据时,CPU会忙碌的处理数据,没有执行其他指令,就会有系统被卡住了的感觉,所以在传输大量数据时,DMA可以减轻大大CPU的负担。 DM
[单片机]
<font color='red'>STM32</font>基础13--直接<font color='red'>存储器</font><font color='red'>访问</font>(DMA)
基于STM32的带触摸屏的无线解说器
本实例是以STM32F103系列单片机作为核心处理器,利用VS1003芯片进行音频解码的一种无线解说器。通过对触摸显示屏的操作,实现手持部分和终端部分二者的无线通讯。系统采用大容量的SD卡作为存储部分,通过SPI将VS1003B与SD卡的数据与STM32进行交互通信。本解说器在播放时没有出现理论上的断续情况,音质较好,占用的软硬件资源也较少,为后续的扩展留下了很大空间。 无线讲解器通常用于工厂、博物馆、景区等室外空旷场所供参观介绍用,通过事先在场所安放无线发射模块,并控制发射模块的工作范围。听众到达景点后,手上的讲解器将自动接收各个地点的无线编码信号,经解码后即可将存储在SD卡中的语音播放,以便清晰地全程收听全部介绍内容。
[单片机]
基于<font color='red'>STM32</font>的带触摸屏的无线解说器
STM32控制步进电机源代码
单片机源程序如下: #include stm32f10x.h #include stm32f10x_rcc.h #include misc.h void RCC_Configuration(void); void GPIO_Configuration(void); void ZhengZhuan(u16 tt); void FanZhuan(u16 tt); void delay_ms(u16 nms); /**************************************************************************** * 名 称:int main(void) * 功 能:
[单片机]
<font color='red'>STM32</font>控制步进电机源代码
stm32 hal 库读写字节代码
void Single_WriteI2C(uint8_tREG_Address,uint8_t REG_data)//写入一个字节的代码 { uint8_t TxData = {REG_Address,REG_data}; while(HAL_I2C_Master_Transmit(&hi2c1,0xa6,(uint8_t*)TxData,2,1000)!= HAL_OK) { if (HAL_I2C_GetError(&hi2c1) !=HAL_I2C_ERROR_AF) { Error_Handler(); } }
[单片机]
STM32---按键学习
#include stm32f10x.h GPIO_InitTypeDef GPIO_InitStructure;//声明GPIO_InitStructure void LED_Init() { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//开GPIOA时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //
[单片机]
STM32库中关于GPIO_PinRemapConfig函数的使用
对于初学习者来说为什么用到PB3和PB4时无法控制输出呢? 下面就这一问题进行分析讲解。 首先,STM32F10x系列的MCU复位后,PA13/14/15 & PB3/4默认配置为JTAG功能。有时我们为了充分利用MCU I/O口的资源,会把这些 端口设置为普通I/O口。具体方法如下: 在GPIO_Configuration(); // 配置使用的 GPIO 口: GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable, ENABLE); // 改变指定管脚的映射 GPIO_Remap_SWJ_Disable,SWJ 完全禁用(JTAG+SW-DP),而且管脚映射函数,需要在GPIO配置函数GP
[单片机]
基于STM32的内部Flash读写操作
本文主要介绍STM32多种的内部Flash读写方式和读写长文件的功能函数怎样编写。阅读完本文可以使你能够正常的完成Flash读写操作。 介绍 STM32 FLASH 不同型号的 STM32,其 FLASH 容量也有所不同,最小的只有 16K 字节,最大的则达到了1024K 字节。本次实验选用的STM32 开发板是F103ZET6,其 FLASH 容量为 512K 字节,属于大容量产品(另外还有中容量和小容量产品),大容量产品的闪存模块组织如图 所示: STM32 的闪存模块由:主存储器、信息块和闪存存储器接口寄存器等 3 部分组成。 主存储器,该部分用来存放代码和数据常数(如 const 类型的数据)。对于大容量产品
[单片机]
基于<font color='red'>STM32</font>的内部Flash读写操作
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved