STM32之FSMC用法详解

发布者:婉如Chanel最新更新时间:2018-10-06 来源: eefocus关键字:STM32  FSMC用法 手机看文章 扫描二维码
随时随地手机看文章

LCD有如下控制线:
CS:Chip Select 片选,低电平有效
RS:Register Select 寄存器选择
WR:Write 写信号,低电平有效
RD:Read 读信号,低电平有效
RESET:重启信号,低电平有效
DB0-DB15:数据线

假如这些线,全部用普通IO口控制。根据LCD控制芯片手册(大部分控制芯片时序差不多):
如果情况如下:
DB0-DB15的IO全部为1(表示数据0xff),也可以为其他任意值,这里以0xff为例。
CS为0(表示选上芯片,CS拉低时,芯片对传入的数据才会有效)
(:RS = 0时,表示读写寄存器;RS = 1表示读写数据RAM。)
WR为0,RD为1(表示是写动作),反过来就是读动作。
RESET一直为高,如果RESET为低,会导致芯片重启。
这种情况,会导致一个值0xff被传入芯片,被LCD控制芯片当作写寄存器值去解析。LCD控制芯片收到DB0-15上的值之后,根据其他控制线的情况,它得出结论,这个0xff是用来设置寄存器的。一般情况下,LCD控制芯片会把传入的寄存器值的高8位当做寄存器地址(因为芯片内部肯定不止一个寄存器),低8位当做真正的要赋给对应寄存器值。这样,就完成了一个写LCD控制芯片内部寄存器的时序。

如果上述情况不变,只将RS置低,那么得到的情况如下:LCD控制芯片会把DB0-15上的数据当做单纯的数据值来处理。那么假如LCD处在画图状态,这个传入的值0xff,就会被显示到对应的点上,0xffff就表示白色,那么对应的点就是白色。在这个数据值传递过来之前,程序肯定会通过设置寄存器值,告诉LCD控制芯片要写的点的位置在哪里。

如果上述两种情况都不变,分别把WR和RD的信号反过来(WR=1,RD=0),那么写信号就会被变成读信号。读信号下,主控芯片需要去读DB0-15的值,而LCD控制芯片就会去设置DB0-15的值,从而完成读数据的时序。

读寄存器的时序麻烦一点。第一步,先要将WR和RD都置低,主控芯片通过DB0-15传入寄存器地址。第二步就和前面读数据一样,将WR置高,RD置低,读出DB0-15的值即可。在这整个的过程中,RS一直为低。

好了,上面就是IO直接控制LCD的方法。假如放到STM32里面,用IO直接控制显得效率很低。STM32有FSMC(其实其他芯片基本都有类似的总线功能),FSMC的好处就是你一旦设置好之后,WR、RD、DB0-DB15这些控制线和数据线,都是FSMC自动控制的。打个比方,当你在程序中写到:
*(volatile unsigned short int *)(0x60000000)=val;
那么FSMC就会自动执行一个写的操作,其对应的主控芯片的WE、RD这些脚,就会呈现出写的时序出来(即WE=0,RD=1),数据val的值也会通过DB0-15自动呈现出来(即FSMC-D0:FSMC-D15=val)。地址0x60000000会被呈现在数据线上(即A0-A25=0,地址线的对应最麻烦,要根据具体情况来,好好看看FSMC手册)。
那么在硬件上面,我们需要做的,仅仅是MCU和LCD控制芯片的连接关系:
WE-WR,均为低电平有效
RD-RD,均为低电平有效
FSMC-D0-15接LCD DB0-15
连接好之后,读写时序都会被FSMC自动完成。但是还有一个很关键的问题,就是RS没有接,CS没有接。因为在FSMC里面,根本就没有对应RS和CS的脚。怎么办呢?这个时候,有一个好方法,就是用某一根地址线来接RS。比如我们选择了A16这根地址线来接,那么当我们要写寄存器的时候,我们需要RS,也就是A16置高。软件中怎么做呢?也就是将FSMC要写的地址改成0x60020000,如下:
*(volatile unsigned short int *)(0x60020000)=val;
这个时候,A16在执行其他FSMC的同时会被拉高,因为A0-A18要呈现出地址0x60020000。0x60020000里面的Bit17=1,就会导致A16为1。
当要读数据时,地址由0x60020000改为了0x60000000,这个时候A16就为0了。

那么有朋友就会有疑问,第一,为什么地址是0x6xxxxxxx而不是0x0xxxxxxx;第二,CS怎么接;第三,为什么Bit17对应A16?
先来看前两个问题,大家找到STM32的FSMC手册,在FSMC手册里面,我们很容易找到,FSMC将0x60000000-0x6fffffff的地址用作NOR/PRAM(共256M地址范围)。而这个存储块,又被分成了四部分,每部分64M地址范围。当对其中某个存储块进行读写时,对应的NEx就会置低。这里,就解决了我们两个问题,第一,LCD的操作时序,和NOR/PRAM是一样的(为什么一样自己找找NOR/PRAM的时序看看),所以我们选择0x6xxxxxxx这个地址范围(选择这个地址范围,操作这个地址时,FSMC就会呈现出NOR/PRAM的时序)。第二,我们可以将NEx连接到LCD的CS,只要我们操作的地址是第一个存储块内即可(即0-0x3ffffff地址范围)。

第三个问题再来看一看FSMC手册关于存储器字宽的描述,我们发现,当外部存储器是16位时,硬件管脚A0-A24表示的是地址线A1-A25的值,所以我们要位移一下,Bit17的值,实际会被反应到A16这根IO来。关于数据宽度及位移的问题,初学的朋友可能会比较疑惑,当你接触了多NOR/PRAM这样的器件后,你会发现,很多芯片的总线,都是这样设计的,为的是节省地址线。

 

PS:看到这里还是不明白,于是查了下手册,有这么一个图,大意是若外部设备的地址宽度是8位的,则HADDR[25:0]与STM32的CPU引脚FSMC_A[25:0]一一对应,最大可以访问64M字节的空间。若外部设备的地址宽度是16位的,则是HADDR[25:1]与STM32的CPU引脚FSMC_A[24:0]一一对应。

HADDR

FSMC_A

25

·

·

1

24

·

·

0

就是上图这个意思,这里的HADDR是需要转换到外部设备的内部AHB地址线,每个地址对应一个字节单元。所以我的理解是:上面出现的地址0x60020000,是工作于CPU内部的地址,体现在HADDR上面是17脚,但是转换到硬件引脚上就是FSMC_A16脚了(因为从上图看来,地址正好是差1,虽然HADDR的地址0并没有,但是可以虚构一下,就当它有了,呵呵),与液晶屏的RS脚相连。

                                                  ——纯粹个人瞎理解,老是感觉再看的时候跟新的一样,还是用自己的话记录一下吧

那么上面就完全解决了LCD驱动如何接FSMC的问题,如果读者没懂,建议将上述文字抄上一遍,FSMC手册对应NOR/PRAM的章节抄一遍。还没懂,就继续抄一遍,抄到懂为止。
虽然上述只是针对LCD讲解了FSMC,但是其实对NOR和外部RAM的操作也是类似的,只不过多了些地址线来寻址而已。


关键字:STM32  FSMC用法 引用地址:STM32之FSMC用法详解

上一篇:在线调试STM32 卡在LDR R0, = SystemInit_ExtMemCtl
下一篇:关于stm32的所有下载程序方法

推荐阅读最新更新时间:2024-03-16 16:15

STM32启动过程启动文件分析
一、概述 1、说明   每一款芯片的启动文件都值得去研究,因为它可是你的程序跑的最初一段路,不可以不知道。通过了解启动文件,我们可以体会到处理器的架构、指令集、中断向量安排等内容,是非常值得玩味的。   STM32作为一款高端Cortex-M3系列单片机,有必要了解它的启动文件。打好基础,为以后优化程序,写出高质量的代码最准备。   本文以一个实际测试代码--START_TEST为例进行阐述。 2、整体过程概括   STM整个启动过程是指从上电开始,一直到运行到main函数之间的这段过程,步骤为(以使用微库为例): ①上电后硬件设置SP、PC ②设置系统时钟 ③软件设置SP ④加载.data、.bss,并初始化栈区
[单片机]
<font color='red'>STM32</font>启动过程启动文件分析
STM32芯片的那些系统级复位功能
我们知道,STM32芯片里有很多系统级的复位,比方上电复位、欠压复位、看门狗复位、软件复位、复位脚电平触发复位等等。这些系统级的复位往往都是针对整个芯片或芯片的绝大部分区域。 其实,我们在实际应用中有时候可能并不需要、甚至不接受总是对整个芯片做大面积的复位。正因为如此,STM32的芯片里除了具备那些系统级复位功能外,还针对各个外设设计了复位功能,即我们可以只需针对某特定外设或特定区域做复位而不影响其它。特定区域一般是指某一块总线驱动的外设集,比方挂在APB1总线的所有外设。 或许有人不了解、或者说没有使用过针对特定外设复位的功能,这里就简单介绍下,抛砖引玉。在STM32各个系列的参考手册里的RCC章节,有关于对外设或局部外
[单片机]
<font color='red'>STM32</font>芯片的那些系统级复位功能
KEIL MDK 和 STM32 的数据类型 一篇就够了
windows和linux中的: 先放一张计算机上的: 单片机中的: KEIL C下的数据定义与windows和linux系统下的数据定义稍有不同 编程过程中,不同的 MCU 或编译器,其数据类型的意义各不相同,所以一定要注意相应变量数据类型的定义和转换,否则在程序 编译时候会出错。 ▲ 在 KELI MDK 数据类型中进了如下定义 char 占用 1 个字节 short int 占用 2 字节//注意这里! int 占用 4 字节 long 占用 4 字节 //注意这里! long int 占用 4 字节 //注意这里! float 占用 4 字节 double 占用 8 字节即有如下宏定义 typedef unsign
[单片机]
KEIL MDK 和 <font color='red'>STM32</font> 的数据类型 一篇就够了
STM32的基本概念及中断应用
1、基本概念 ARMCoetex-M3内核共支持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。STM32目前支持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使用中断优先级设置8bit中的高4位。 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器。 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,
[单片机]
基于STM32芯片的电源监控器应用方案
电源对电子设备的重要性不言而喻,它是保证系统稳定运行的基础,而保证系统能稳定运行后,又有低功耗的要求。在很多应用场合中都对电子设备的功耗要求非常苛刻,如某些传感器信息采集设备,仅靠小型的电池提供电源,要求工作长达数年之久,且期间不需要任何维护;由于智慧穿戴设备的小型化要求,电池体积不能太大导致容量也比较小,所以也很有必要从控制功耗入手,提高设备的续行时间。因此,STM32 有专门的电源管理外设监控电源并管理设备的运行模式,确保系统正常运行,并尽量降低器件的功耗。 电源监控器 STM32芯片主要通过引脚 VDD 从外部获取电源,在它的内部具有电源监控器用于检测 VDD的电压,以实现复位功能及掉电紧急处理功能,保证系统可靠地运行。
[单片机]
基于<font color='red'>STM32</font>芯片的电源监控器应用方案
谈一下STM32的启动流程
STM32三种启动模式 下好程序后,重启芯片时,SYSCLK的第4个上升沿,BOOT引脚的值将被锁存,这就是所谓的启动过程。 STM32上电或者复位后,代码区始终从0x00000000开始,其实就是将存储空间的地址映射到0x00000000中。三种启动模式如下: 从主闪存存储器启动,将主Flash地址0x08000000映射到0x00000000,这样代码启动之后就相当于从0x08000000开始。主闪存存储器是STM32内置的Flash,作为芯片内置的Flash,是正常的工作模式。一般我们使用JTAG或者SWD模式下载程序时,就是下载到这个里面,重启后也直接从这启动程序。 从系统存储器启动。首先控制BOOT0、BOOT1管脚
[单片机]
谈一下<font color='red'>STM32</font>的启动流程
STM32启动文件startup_stm32f10x_hd.s的代码讲解
本文对STM32启动文件startup_stm32f10x_hd.s的代码进行讲解,此文件的代码在任何一个STM32F10x工程中都可以找到。 启动文件使用的ARM汇编指令汇总 Stack——栈 Stack_Size EQU 0x00000400 AREA STACK, NOINIT, READWRITE, ALIGN= Stack_Mem SPACE Stack_Size __initial_sp 开辟栈的大小为 0X00000400(1KB),名字为 STACK, NOINIT 即不初始化,可读可写, 8(2^3)字节对齐。 栈的作用是用于局部变量,函数调用,函数形参等的开销,栈的大小不能超过内部SRA
[单片机]
<font color='red'>STM32</font>启动文件startup_stm32f10x_hd.s的代码讲解
STM32中断和事件的对比差异分析
事件是中断的触发源,开放了对应的中断屏蔽位,则事件可以触发相应的中断。 事件还是其它一些操作的触发源,比如DMA,还有TIM中影子寄存器的传递与更新;而中断是不能触发这些操作的,所以要把事件与中断区分开。当你只要产生中断而不想触发其它操作时,就可以用事件屏蔽寄存器实现。 在STM32中,中断与事件不是等价的,一个中断肯定对应一个事件,但一个事件不一定对应一个中断。 这张图是一条外部中断线或外部事件线的示意图,图中信号线上划有一条斜线,旁边标志19字样的注释,表示这样的线路共有19套.图中的蓝色虚线箭头,标出了外部中断信号的传输路径,首先外部信号从编号1的芯片管脚进入,经过编号2的边沿检测电路,通过编号3的或门进入中断挂起请
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved