上一节讲了74HC595的驱动程序。为了更加方便操作74HC595输出的每个IO状态,这节讲如何把74HC595驱动程序翻译成类似单片机IO口直接驱动的方式。要教会大家两个知识点:
第一点:如何灵活运用与和非的运算符来实现位的操作。
第二点:如何灵活运用一个更新变量来实现静态刷新输出或者静态刷新显示的功能。
具体内容,请看源代码讲解。
(1)硬件平台:基于朱兆祺51单片机学习板。
(2)实现功能:两片联级的74HC595驱动的16个LED灯交叉闪烁。比如,先是第1,3,5,7,9,11,13,15八个灯亮,其它的灯都灭。然后再反过来,原来亮的就灭,原来灭的就亮。交替闪烁。
(3)源代码讲解如下:
#include "REG52.H"
#define const_time_level 200
void initial_myself();
void initial_peripheral();
void delay_short(unsigned int uiDelayShort);
void delay_long(unsigned int uiDelaylong);
void led_flicker();
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01);
void led_update(); //LED更新函数
void T0_time(); //定时中断函数
sbit hc595_sh_dr=P2^3;
sbit hc595_st_dr=P2^4;
sbit hc595_ds_dr=P2^5;
unsigned char ucLed_dr1=0; //代表16个灯的亮灭状态,0代表灭,1代表亮
unsigned char ucLed_dr2=0;
unsigned char ucLed_dr3=0;
unsigned char ucLed_dr4=0;
unsigned char ucLed_dr5=0;
unsigned char ucLed_dr6=0;
unsigned char ucLed_dr7=0;
unsigned char ucLed_dr8=0;
unsigned char ucLed_dr9=0;
unsigned char ucLed_dr10=0;
unsigned char ucLed_dr11=0;
unsigned char ucLed_dr12=0;
unsigned char ucLed_dr13=0;
unsigned char ucLed_dr14=0;
unsigned char ucLed_dr15=0;
unsigned char ucLed_dr16=0;
unsigned char ucLed_update=0; //刷新变量。每次更改LED灯的状态都要更新一次。
unsigned char ucLedStep=0; //步骤变量
unsigned int uiTimeCnt=0; //统计定时中断次数的延时计数器
unsigned char ucLedStatus16_09=0; //代表底层74HC595输出状态的中间变量
unsigned char ucLedStatus08_01=0; //代表底层74HC595输出状态的中间变量
void main()
{
initial_myself();
delay_long(100);
initial_peripheral();
while(1)
{
led_flicker();
led_update(); //LED更新函数
}
}
/* 注释一:
* 把74HC595驱动程序翻译成类似单片机IO口直接驱动方式的过程。
* 每次更新LED输出,记得都要把ucLed_update置1表示更新。
*/
void led_update() //LED更新函数
{
if(ucLed_update==1)
{
ucLed_update=0; //及时清零,让它产生只更新一次的效果,避免一直更新。
if(ucLed_dr1==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x01;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xfe;
}
if(ucLed_dr2==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x02;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xfd;
}
if(ucLed_dr3==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x04;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xfb;
}
if(ucLed_dr4==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x08;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xf7;
}
if(ucLed_dr5==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x10;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xef;
}
if(ucLed_dr6==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x20;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xdf;
}
if(ucLed_dr7==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x40;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0xbf;
}
if(ucLed_dr8==1)
{
ucLedStatus08_01=ucLedStatus08_01|0x80;
}
else
{
ucLedStatus08_01=ucLedStatus08_01&0x7f;
}
if(ucLed_dr9==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x01;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xfe;
}
if(ucLed_dr10==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x02;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xfd;
}
if(ucLed_dr11==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x04;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xfb;
}
if(ucLed_dr12==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x08;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xf7;
}
if(ucLed_dr13==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x10;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xef;
}
if(ucLed_dr14==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x20;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xdf;
}
if(ucLed_dr15==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x40;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0xbf;
}
if(ucLed_dr16==1)
{
ucLedStatus16_09=ucLedStatus16_09|0x80;
}
else
{
ucLedStatus16_09=ucLedStatus16_09&0x7f;
}
hc595_drive(ucLedStatus16_09,ucLedStatus08_01); //74HC595底层驱动函数
}
}
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01)
{
unsigned char i;
unsigned char ucTempData;
hc595_sh_dr=0;
hc595_st_dr=0;
ucTempData=ucLedStatusTemp16_09; //先送高8位
for(i=0;i<8;i++)
{
if(ucTempData>=0x80)hc595_ds_dr=1;
else hc595_ds_dr=0;
hc595_sh_dr=0; //SH引脚的上升沿把数据送入寄存器
delay_short(15);
hc595_sh_dr=1;
delay_short(15);
ucTempData=ucTempData<<1;
}
ucTempData=ucLedStatusTemp08_01; //再先送低8位
for(i=0;i<8;i++)
{
if(ucTempData>=0x80)hc595_ds_dr=1;
else hc595_ds_dr=0;
hc595_sh_dr=0; //SH引脚的上升沿把数据送入寄存器
delay_short(15);
hc595_sh_dr=1;
delay_short(15);
ucTempData=ucTempData<<1;
}
hc595_st_dr=0; //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
delay_short(15);
hc595_st_dr=1;
delay_short(15);
hc595_sh_dr=0; //拉低,抗干扰就增强
hc595_st_dr=0;
hc595_ds_dr=0;
}
void led_flicker() ////第三区 LED闪烁应用程序
{
switch(ucLedStep)
{
case 0:
if(uiTimeCnt>=const_time_level) //时间到
{
uiTimeCnt=0; //时间计数器清零
ucLed_dr1=1; //每个变量都代表一个LED灯的状态
ucLed_dr2=0;
ucLed_dr3=1;
ucLed_dr4=0;
ucLed_dr5=1;
ucLed_dr6=0;
ucLed_dr7=1;
ucLed_dr8=0;
ucLed_dr9=1;
ucLed_dr10=0;
ucLed_dr11=1;
ucLed_dr12=0;
ucLed_dr13=1;
ucLed_dr14=0;
ucLed_dr15=1;
ucLed_dr16=0;
ucLed_update=1; //更新显示
ucLedStep=1; //切换到下一个步骤
}
break;
case 1:
if(uiTimeCnt>=const_time_level) //时间到
{
uiTimeCnt=0; //时间计数器清零
ucLed_dr1=0; //每个变量都代表一个LED灯的状态
ucLed_dr2=1;
ucLed_dr3=0;
ucLed_dr4=1;
ucLed_dr5=0;
ucLed_dr6=1;
ucLed_dr7=0;
ucLed_dr8=1;
ucLed_dr9=0;
ucLed_dr10=1;
ucLed_dr11=0;
ucLed_dr12=1;
ucLed_dr13=0;
ucLed_dr14=1;
ucLed_dr15=0;
ucLed_dr16=1;
ucLed_update=1; //更新显示
ucLedStep=0; //返回到上一个步骤
}
break;
}
}
void T0_time() interrupt 1
{
TF0=0; //清除中断标志
TR0=0; //关中断
if(uiTimeCnt<0xffff) //设定这个条件,防止uiTimeCnt超范围。
{
uiTimeCnt++; //累加定时中断的次数,
}
TH0=0xf8; //重装初始值(65535-2000)=63535=0xf82f
TL0=0x2f;
TR0=1; //开中断
}
void delay_short(unsigned int uiDelayShort)
{
unsigned int i;
for(i=0;i { ; //一个分号相当于执行一条空语句 } } void delay_long(unsigned int uiDelayLong) { unsigned int i; unsigned int j; for(i=0;i { for(j=0;j<500;j++) //内嵌循环的空指令数量 { ; //一个分号相当于执行一条空语句 } } } void initial_myself() //第一区 初始化单片机 { TMOD=0x01; //设置定时器0为工作方式1 TH0=0xf8; //重装初始值(65535-2000)=63535=0xf82f TL0=0x2f; } void initial_peripheral() //第二区 初始化外围 { EA=1; //开总中断 ET0=1; //允许定时中断 TR0=1; //启动定时中断 } 总结陈词: 这节讲了把74HC595驱动程序翻译成类似单片机IO口直接驱动的方式,接下来,我们该如何来运用这种驱动方式实现跑马灯的程序?欲知详情,请听下回分解-----依次逐个点亮LED之后,再依次逐个熄灭LED的跑马灯程序。
上一篇:第17节:两片联级74HC595驱动16个LED灯的基本驱动程序
下一篇:第19节:依次逐个点亮后逐个熄灭LED的跑马灯程序
推荐阅读最新更新时间:2024-03-16 14:47