第20节:依次逐个亮灯并且每次只能亮一个灯的跑马灯程序

发布者:Ampoule最新更新时间:2016-03-14 来源: eefocus关键字:依次  逐个亮灯  跑马灯程序 手机看文章 扫描二维码
随时随地手机看文章
开场白:
上一节讲了先依次逐个亮再依次逐个灭的跑马灯程序。这一节在上一节的基础上,略作修改,继续讲跑马灯程序。我的跑马灯程序看似简单而且重复,其实蕴含着鸿哥的大智慧。它是基于鸿哥的switch状态机思想,领略到了它的简单和精髓,以后任何所谓复杂的工程项目,都不再复杂。要教会大家一个知识点:通过本跑马灯程序,加深理解鸿哥所有实战项目中switch状态机的思想精髓。
具体内容,请看源代码讲解。
 
(1)硬件平台:基于朱兆祺51单片机学习板。
 
(2)实现功能:第9个至第16个LED灯,依次逐个亮灯并且每次只能亮一个灯。第1至第8个LED灯一直灭。
 
(3)源代码讲解如下:
#include "REG52.H"
 
#define const_time_level_09_16  300  //第9个至第16个LED跑马灯的速度延时时间
 
void initial_myself();    
void initial_peripheral();
void delay_short(unsigned int uiDelayShort); 
void delay_long(unsigned int uiDelaylong);
void led_flicker_09_16(); // 第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01);
void led_update();  //LED更新函数
void T0_time();  //定时中断函数
 
 
sbit hc595_sh_dr=P2^3;    
sbit hc595_st_dr=P2^4;  
sbit hc595_ds_dr=P2^5;  
 
unsigned char ucLed_dr1=0;   //代表16个灯的亮灭状态,0代表灭,1代表亮
unsigned char ucLed_dr2=0;
unsigned char ucLed_dr3=0;
unsigned char ucLed_dr4=0;
unsigned char ucLed_dr5=0;
unsigned char ucLed_dr6=0;
unsigned char ucLed_dr7=0;
unsigned char ucLed_dr8=0;
unsigned char ucLed_dr9=0;
unsigned char ucLed_dr10=0;
unsigned char ucLed_dr11=0;
unsigned char ucLed_dr12=0;
unsigned char ucLed_dr13=0;
unsigned char ucLed_dr14=0;
unsigned char ucLed_dr15=0;
unsigned char ucLed_dr16=0;
 
unsigned char ucLed_update=0;  //刷新变量。每次更改LED灯的状态都要更新一次。
 
unsigned char ucLedStep_09_16=0; //第9个至第16个LED跑马灯的步骤变量
unsigned int  uiTimeCnt_09_16=0; //第9个至第16个LED跑马灯的统计定时中断次数的延时计数器
 
unsigned char ucLedStatus16_09=0;   //代表底层74HC595输出状态的中间变量
unsigned char ucLedStatus08_01=0;   //代表底层74HC595输出状态的中间变量
 
void main() 
  {
   initial_myself();  
   delay_long(100);   
   initial_peripheral(); 
   while(1)   
   {
      led_flicker_09_16(); // 第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
          led_update();  //LED更新函数
   }
 
}
 
 
void led_update()  //LED更新函数
{
 
   if(ucLed_update==1)
   {
       ucLed_update=0;   //及时清零,让它产生只更新一次的效果,避免一直更新。
 
       if(ucLed_dr1==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x01;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xfe;
           }
 
       if(ucLed_dr2==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x02;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xfd;
           }
 
       if(ucLed_dr3==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x04;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xfb;
           }
 
       if(ucLed_dr4==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x08;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xf7;
           }
 
 
       if(ucLed_dr5==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x10;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xef;
           }
 
 
       if(ucLed_dr6==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x20;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xdf;
           }
 
 
       if(ucLed_dr7==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x40;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0xbf;
           }
 
 
       if(ucLed_dr8==1)
           {
              ucLedStatus08_01=ucLedStatus08_01|0x80;
           }
           else
           {
              ucLedStatus08_01=ucLedStatus08_01&0x7f;
           }
 
       if(ucLed_dr9==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x01;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xfe;
           }
 
       if(ucLed_dr10==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x02;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xfd;
           }
 
       if(ucLed_dr11==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x04;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xfb;
           }
 
       if(ucLed_dr12==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x08;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xf7;
           }
 
 
       if(ucLed_dr13==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x10;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xef;
           }
 
 
       if(ucLed_dr14==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x20;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xdf;
           }
 
 
       if(ucLed_dr15==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x40;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0xbf;
           }
 
 
       if(ucLed_dr16==1)
           {
              ucLedStatus16_09=ucLedStatus16_09|0x80;
           }
           else
           {
              ucLedStatus16_09=ucLedStatus16_09&0x7f;
           }
 
       hc595_drive(ucLedStatus16_09,ucLedStatus08_01);  //74HC595底层驱动函数
 
   }
}
 
void hc595_drive(unsigned char ucLedStatusTemp16_09,unsigned char ucLedStatusTemp08_01)
{
   unsigned char i;
   unsigned char ucTempData;
   hc595_sh_dr=0;
   hc595_st_dr=0;
 
   ucTempData=ucLedStatusTemp16_09;  //先送高8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;
 
         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(15); 
         hc595_sh_dr=1;
         delay_short(15); 
 
         ucTempData=ucTempData<<1;
   }
 
   ucTempData=ucLedStatusTemp08_01;  //再先送低8位
   for(i=0;i<8;i++)
   { 
         if(ucTempData>=0x80)hc595_ds_dr=1;
         else hc595_ds_dr=0;
 
         hc595_sh_dr=0;     //SH引脚的上升沿把数据送入寄存器
         delay_short(15); 
         hc595_sh_dr=1;
         delay_short(15); 
 
         ucTempData=ucTempData<<1;
   }
 
   hc595_st_dr=0;  //ST引脚把两个寄存器的数据更新输出到74HC595的输出引脚上并且锁存起来
   delay_short(15); 
   hc595_st_dr=1;
   delay_short(15); 
 
   hc595_sh_dr=0;    //拉低,抗干扰就增强
   hc595_st_dr=0;
   hc595_ds_dr=0;
 
}
 
/* 注释一:
* 以下程序,看似简单而且重复,其实蕴含着鸿哥的大智慧。
* 它是基于鸿哥的switch状态机思想,领略到了它的简单和精髓,
* 以后任何所谓复杂的工程项目,都不再复杂。
*/
void led_flicker_09_16() //第9个至第16个LED的跑马灯程序,逐个亮并且每次只能亮一个.
{
  switch(ucLedStep_09_16)
  {
     case 0:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr16=0;  //第16个灭
               ucLed_dr9=1;  //第9个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=1; //切换到下一个步骤
           }
           break;
     case 1:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr9=0;  //第9个灭
               ucLed_dr10=1;  //第10个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=2; //切换到下一个步骤
           }
           break;
     case 2:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr10=0;  //第10个灭
               ucLed_dr11=1;  //第11个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=3; //切换到下一个步骤
           }
           break;
     case 3:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr11=0;  //第11个灭
               ucLed_dr12=1;  //第12个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=4; //切换到下一个步骤
           }
           break;
     case 4:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr12=0;  //第12个灭
               ucLed_dr13=1;  //第13个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=5; //切换到下一个步骤
           }
           break;
     case 5:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr13=0;  //第13个灭
               ucLed_dr14=1;  //第14个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=6; //切换到下一个步骤
           }
           break;
     case 6:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr14=0;  //第14个灭
               ucLed_dr15=1;  //第15个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=7; //切换到下一个步骤
           }
           break;
     case 7:
           if(uiTimeCnt_09_16>=const_time_level_09_16) //时间到
           {
               uiTimeCnt_09_16=0; //时间计数器清零
 
               ucLed_dr15=0;  //第15个灭
               ucLed_dr16=1;  //第16个亮
 
               ucLed_update=1;  //更新显示
               ucLedStep_09_16=0; //返回到开始处,重新开始新的一次循环
           }
           break;
    
   }
 
}
 
 
void T0_time() interrupt 1
{
  TF0=0;  //清除中断标志
  TR0=0; //关中断
 
  if(uiTimeCnt_09_16<0xffff)  //设定这个条件,防止uiTimeCnt超范围。
  {
      uiTimeCnt_09_16++;  //累加定时中断的次数,
  }
 
  TH0=0xf8;   //重装初始值(65535-2000)=63535=0xf82f
  TL0=0x2f;
  TR0=1;  //开中断
}
 
void delay_short(unsigned int uiDelayShort) 
{
   unsigned int i;  
   for(i=0;i
   {
     ;   //一个分号相当于执行一条空语句
   }
}
 
void delay_long(unsigned int uiDelayLong)
{
   unsigned int i;
   unsigned int j;
   for(i=0;i
   {
      for(j=0;j<500;j++)  //内嵌循环的空指令数量
          {
             ; //一个分号相当于执行一条空语句
          }
   }
}
 
 
void initial_myself()  //第一区 初始化单片机
{
 
  TMOD=0x01;  //设置定时器0为工作方式1
 
 
  TH0=0xf8;   //重装初始值(65535-2000)=63535=0xf82f
  TL0=0x2f;
 
 
}
 
void initial_peripheral() //第二区 初始化外围
{
  EA=1;     //开总中断
  ET0=1;    //允许定时中断
  TR0=1;    //启动定时中断
 
}
 
总结陈词:
上一节和这一节讲了两种不同的跑马灯程序,如果要让这两种不同的跑马灯程序都能各自独立运行,就涉及到多任务并行处理的程序框架。没错,下一节就讲多任务并行处理这方面的知识,欲知详情,请听下回分解-----多任务并行处理两路跑马灯。
关键字:依次  逐个亮灯  跑马灯程序 引用地址:第20节:依次逐个亮灯并且每次只能亮一个灯的跑马灯程序

上一篇:第19节:依次逐个点亮后逐个熄灭LED的跑马灯程序
下一篇:第21节:多任务并行处理两路跑马灯

推荐阅读最新更新时间:2024-03-16 14:47

STM32之GPIO及第一个STM32程序跑马灯
今天来说一说,GPIO,对于我这个新手来说,GPIO就好比我在学习开车之前得学会如何开门一样,由此可以看出这对于我学习STM32 的重要性,好废话不多说,先总结一下STM32F103ZE的开发板里总共有7组IO口,每组IO口有16个IO,即这块板子总共有112个IO口分别是GPIOA~GPIOG。 GPIO的工作模式主要有八种:4种输入方式,4种输出方式,分别为输入浮空,输入上拉,输入下拉,模拟输入;输出方式为开漏输出,开漏复用输出,推挽输出,推挽复用输出。对应的为: (1)GPIO_Mode_AIN 模拟输入 (2)GPIO_Mode_IN_FLOATING 浮空输入 (3)GPIO_Mode_IPD 下拉输入 (
[单片机]
单片机C语言程序-依次点亮八个LED
电路很简单八个led灯接在p1口.运行后看到的效果是 从第一个灯开始 随着时间变化 二进制数的递减 所有的灯都会依次的点亮,当全部的灯都被点亮后再重新开始这个过程 一直循环下去 单片机是不是很有趣? 下面是c语言程序源码 #include reg51.h void delay100ms(); //如果函数是在主函数后面定义,那么一定要在主函数前面声明 void main() { int i; i=0xfe; while(1) {P1=i; i--; delay100ms(); if(i==0) i=0xfe; } } void delay100ms(vo
[单片机]
用C语言写一个跑马灯程序
#define MAIN_Fosc 22118400L //定义主时钟 #include STC15Fxxxx.H /********* 功能说明 ***程序使用P4.7 P4.6 P1.6 P1.7 来演示跑马灯,输出低驱动。********/ void delay_ms(u8 ms); /******************** 主函数 ******************/ void main(void) { P0M1 = 0; P0M0 = 0; //设置为准双向口 P1M1 = 0; P1M0 = 0; //设置为准双向口 P2M1 = 0; P2M0 = 0; //设置为准双向口 P3M1 = 0; P3M0 = 0
[单片机]
第20节:依次逐个并且每次只能一个跑马灯程序
开场白: 上一节讲了先依次逐个亮再依次逐个灭的跑马灯程序。这一节在上一节的基础上,略作修改,继续讲跑马灯程序。我的跑马灯程序看似简单而且重复,其实蕴含着鸿哥的大智慧。它是基于鸿哥的switch状态机思想,领略到了它的简单和精髓,以后任何所谓复杂的工程项目,都不再复杂。要教会大家一个知识点:通过本跑马灯程序,加深理解鸿哥所有实战项目中switch状态机的思想精髓。 具体内容,请看源代码讲解。 (1)硬件平台:基于朱兆祺51单片机学习板。 (2)实现功能:第9个至第16个LED灯,依次逐个亮灯并且每次只能亮一个灯。第1至第8个LED灯一直灭。 (3)源代码讲解如下: #include REG52.H #def
[单片机]
STM32之GPIO及第一个STM32程序跑马灯
今天来说一说,GPIO,对于我这个新手来说,GPIO就好比我在学习开车之前得学会如何开门一样,由此可以看出这对于我学习STM32 的重要性,好废话不多说,先总结一下STM32F103ZE的开发板里总共有7组IO口,每组IO口有16个IO,即这块板子总共有112个IO口分别是GPIOA~GPIOG。 GPIO的工作模式主要有八种:4种输入方式,4种输出方式,分别为输入浮空,输入上拉,输入下拉,模拟输入;输出方式为开漏输出,开漏复用输出,推挽输出,推挽复用输出。对应的为: (1)GPIO_Mode_AIN 模拟输入 (2)GPIO_Mode_IN_FLOATING 浮空输入 (3)GPIO_Mode_IPD 下拉输入 (4)GPIO_
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved