STM32时钟配置方法详解

发布者:PeacefulSoul最新更新时间:2016-05-25 来源: eefocus关键字:STM32  时钟配置方法 手机看文章 扫描二维码
随时随地手机看文章
一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

①HSI是高速内部时钟,RC振荡器,频率为8MHz。

②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

③LSI是低速内部时钟,RC振荡器,频率为40kHz。

④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。

二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:

①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。此方法可提高EMC性能;第2种:分别重映射OSC_IN和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。此方法可以减小功耗并(相对上面)节省2个外部电阻。

三、用HSE时钟,程序设置时钟参数流程:
01、将RCC寄存器重新设置为默认值   RCC_DeInit;
02、打开外部高速时钟晶振HSE    RCC_HSEConfig(RCC_HSE_ON);
03、等待外部高速时钟晶振工作    HSEStartUpStatus = RCC_WaitForHSEStartUp();
04、设置AHB时钟         RCC_HCLKConfig;
05、设置高速AHB时钟     RCC_PCLK2Config;
06、设置低速速AHB时钟   RCC_PCLK1Config;
07、设置PLL              RCC_PLLConfig;
08、打开PLL              RCC_PLLCmd(ENABLE);
09、等待PLL工作   while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟        RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟    RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)

/*

* Function Name  : RCC_Configuration 

* Description    :  RCC配置(使用外部8MHz晶振)

* Input            : 无

* Output         : 无

* Return         : 无

*/

void RCC_Configuration(void)

{

  /*将外设RCC寄存器重设为缺省值*/

  RCC_DeInit();

 

  /*设置外部高速晶振(HSE)*/

  RCC_HSEConfig(RCC_HSE_ON);   //RCC_HSE_ON——HSE晶振打开(ON)

 

  /*等待HSE起振*/

  HSEStartUpStatus = RCC_WaitForHSEStartUp();

 

  if(HSEStartUpStatus == SUCCESS)        //SUCCESS:HSE晶振稳定且就绪

  {

    /*设置AHB时钟(HCLK)*/ 

    RCC_HCLKConfig(RCC_SYSCLK_Div1);  //RCC_SYSCLK_Div1——AHB时钟= 系统时钟

 

    /* 设置高速AHB时钟(PCLK2)*/ 

    RCC_PCLK2Config(RCC_HCLK_Div1);   //RCC_HCLK_Div1——APB2时钟= HCLK

 

    /*设置低速AHB时钟(PCLK1)*/    

RCC_PCLK1Config(RCC_HCLK_Div2);   //RCC_HCLK_Div2——APB1时钟= HCLK / 2

 

    /*设置FLASH存储器延时时钟周期数*/

    FLASH_SetLatency(FLASH_Latency_2);    //FLASH_Latency_2  2延时周期

   

 /*选择FLASH预取指缓存的模式*/  

    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);       // 预取指缓存使能

 

    /*设置PLL时钟源及倍频系数*/ 

    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);     

// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9

   

  /*使能PLL */

    RCC_PLLCmd(ENABLE); 

 

    /*检查指定的RCC标志位(PLL准备好标志)设置与否*/   

    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)      

       {

       }

 

    /*设置系统时钟(SYSCLK)*/ 

    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); 

//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟

 

    /* PLL返回用作系统时钟的时钟源*/

    while(RCC_GetSYSCLKSource() != 0x08)        //0x08:PLL作为系统时钟

       { 

       }

     }

 

 /*使能或者失能APB2外设时钟*/    

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | 

RCC_APB2Periph_GPIOC , ENABLE); 

//RCC_APB2Periph_GPIOA    GPIOA时钟

//RCC_APB2Periph_GPIOB    GPIOB时钟

//RCC_APB2Periph_GPIOC    GPIOC时钟

//RCC_APB2Periph_GPIOD    GPIOD时钟

}

五、时钟频率

STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。目前TI的M3系列芯片最高频率可以达到80M。

在stm32固件库3.0中对时钟频率的选择进行了大大的简化,原先的一大堆操作都在后台进行。系统给出的函数为SystemInit()。但在调用前还需要进行一些宏定义的设置,具体的设置在system_stm32f10x.c文件中。

文件开头就有一个这样的定义: 
//#define SYSCLK_FREQ_HSE    HSE_Value 
//#define SYSCLK_FREQ_20MHz 20000000 
//#define SYSCLK_FREQ_36MHz 36000000 
//#define SYSCLK_FREQ_48MHz 48000000 
//#define SYSCLK_FREQ_56MHz 56000000 
#define SYSCLK_FREQ_72MHz 72000000

ST 官方推荐的外接晶振是 8M,所以库函数的设置都是假定你的硬件已经接了 8M 晶振来运算的.以上东西就是默认晶振 8M 的时候,推荐的 CPU 频率选择.在这里选择了:
#define SYSCLK_FREQ_72MHz 72000000 
也就是103系列能跑到的最大值72M

然后这个 C文件继续往下看 
#elif defined SYSCLK_FREQ_72MHz 
const uint32_t SystemFrequency         = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_SysClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_AHBClk = SYSCLK_FREQ_72MHz;    
const uint32_t SystemFrequency_APB1Clk = (SYSCLK_FREQ_72MHz/2);
const uint32_t SystemFrequency_APB2Clk = SYSCLK_FREQ_72MHz;

这就是在定义了CPU跑72M的时候,各个系统的速度了.他们分别是:硬件频率,系统时钟,AHB总线频率,APB1总线频率,APB2总线频率.再往下看,看到这个了: 
#elif defined SYSCLK_FREQ_72MHz 
static void SetSysClockTo72(void);

这就是定义 72M 的时候,设置时钟的函数.这个函数被 SetSysClock ()函数调用,而
SetSysClock ()函数则是被 SystemInit()函数调用.最后 SystemInit()函数,就是被你调用的了

所以设置系统时钟的流程就是: 
首先用户程序调用 SystemInit()函数,这是一个库函数,然后 SystemInit()函数里面,进行了一些寄存器必要的初始化后,就调用 SetSysClock()函数. SetSysClock()函数根据那个#define SYSCLK_FREQ_72MHz 72000000 的宏定义,知道了要调用SetSysClockTo72()这个函数,于是,就一堆麻烦而复杂的设置~!@#$%^然后,CPU跑起来了,而且速度是 72M. 虽然说的有点累赘,但大家只需要知道,用户要设置频率,程序中就做的就两个事情:

第一个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000 
第二个:调用SystemInit()

关键字:STM32  时钟配置方法 引用地址:STM32时钟配置方法详解

上一篇:STM32F103VBT6 使用16M晶振和8M晶振 RCC设置有何不同
下一篇:STM32输入捕获模式设置并用DMA接收数据

推荐阅读最新更新时间:2024-03-16 14:54

基于DSP和STM32的电液伺服控制器设计
引言 伺服控制系统大部分都采用传统的硬件结构,控制算法比较固定,而且也无法实现不同工况下的高性能控制算法,难以满足现代工业的需求。现阶段迫切需要研制一种智能型、具有高可靠性、控制性能更加优秀的电液伺服系统。基于DSP与STM32的智能型伺服控制器具有软硬件结合程度更加紧密、系统的智能化程度更高、可实现多种控制策略的优势。本系统从实际的需求出发,结合精确数字PID控制算法和Fuzzy控制算法自身的优势,组合成Fuzzy—PID控制算法,根据偏差的大小范围选择合适的控制算法进行调节。 本设计将两款工控芯片——TI公司的浮点型DSPTMS320F28335和ST公司的ARM7升级版STM32F103RET6引入智能电液伺服系统,设计
[单片机]
基于DSP和<font color='red'>STM32</font>的电液伺服控制器设计
关于STM32驱动点阵的问题整理及科研思维小酌
之前用51单片机成功将5块级联的16*16点阵成功驱动,闲来无事,沉积内功,用STM32驱动这几个点阵,本觉易事,没想到点阵豆豆竟三天耍脾气,不配合。一筹莫展之际,和别人聊微信,顺手掐断了豆豆的VCC,GND,惊呼哇塞,预期效果。真是无心插柳柳成荫。正预深入测试下去,停电,兴奋若狂,迫不及待,莫非上帝知道问题要揭晓了,急了,连断电的招都使。停电两小时,由缺VCC可正常显示,加VCC反而不亮,已推断出问题范围。入夏的夜,和豆豆玩到10点半,终把豆豆抱。 硬件配置:MCU :STM32,工作电压3.3V; 驱动芯片74HC595; 16*16点阵:五块 问题一:.点阵上电不亮,掉电正常显示 答:74hc595工作电压
[单片机]
STM32驱动LCD12864显示屏
我们做一个电子产品,往往需要实现人机交互的功能。那么人机交互的方式除了输出到上位机通过电脑去显示,显示器也是一个很不错的方式,可用于一些不能使用电脑的场合。LCD12864显示器中的一种,具有价格低廉,操作简单的优点。今天就为大家带来一个STM32驱动12864的例程,使用SPI串行通信,仅仅需要三根数据线就可以完成通信。废话不多说,进入正题。 接线: RS----PB15 RW----PB14 EN----PB13 PSB---GND 1.初始化IO口以及显示屏 void Lcd_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2P
[单片机]
STM32学习笔记——控制GPIO输出点亮LED灯
一.预备知识 使用51单片机控制IO口相对来说要简单得多,最小系统搭建完毕后直接通过软件往各IO口写 1 或者写 0 即可。但使用STM32控制IO口输入输出却远没有这么容易,经过一个下午的查阅文献及探索后,略微有了头绪。 个人所使用的STM32F103VBT6有100个引脚,其中有五组GPIO(GPIOA GPIOE),每组有16个GPIO端口(GPIOx_Pin0 GPIOx_Pin15)共80个,每个GPIO端口都有: 两个32位配置寄存器(GPIOx_CRL,GPIOx_CRH); 两个32位数据寄存器(GPIOx_IDR,GPIOx_ODR); 一个32位置位/复位寄存器(GPIOx_BSRR); 一个16位复
[单片机]
STM32 IO口初始化流程
首先初始化时钟APB2 1.配置输入输出模式和引脚速度(GPIOx_CRL或GPIOx_CRH) 2.读取或写入IO口数据 2.1读取IO口数据(GPIOx_IDR) 2.2写入IO口数据(GPIOx_ODR、GPIOx_BSRR、GPIOx_BRR) 3.锁定IO口数据,直到下次复位(GPIOx_LCKR)
[单片机]
STM32 定时器输出比较翻转模式
STM32的定时器还有一个模式叫做输出比较翻转模式。这种模式,顾名思义,可以翻转电平,但是条件是:当计数值达到比较值时,才会在对应的通道引脚翻转原先的电平。利用这个特点,我们可以在引脚上生成PWM波。 下面就讲讲如何利用这个 翻转 这个特点,来输出PWM波。还是基于我自己的规工程。 1、工程的修改 1)这里用到了定时器,所以需要将stm32f10x_tim.h添加到STM32F10x_StdPeriod_Driver工程组中。 2)打开stm32f0x_conf.h文件,将其中原先被屏蔽的语句:#include stm32f10x_tim.h 的注释去掉。 3)新建OCToggle.c与OCToggle.h两个文件,分别保存
[单片机]
<font color='red'>STM32</font> 定时器输出比较翻转模式
STM32 IAP 升级功能
IAP In Application Programming 可通过USB,CAN,UART,I2C,SPI等接口实现 IAP流程 Bootloader程序:接收升级程序,更新到flash指定地址;跳转到指定地址执行 STM32设置 ①:为Bootloader预留0x10000空间 ②:设置APP程序的起始地址 ③:中断向量表的偏移量设置 ④:生成bin文件 详见:https://blog.csdn.net/zhangxuechao ⑤:代码更新FLASH固件,执行FLASH代码 举例 //appxaddr:应用程序的起始地址 //appbuf:应用程序CODE. //appsize:应用程序大小(字节).
[单片机]
<font color='red'>STM32</font> IAP 升级功能
STM32】HAL库-通用定时器
简介 通用定时器是一个通过可编程预分频器驱动的16位自动装载计数器构成。 它适用于多种场合,包括测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)。 使用定时器预分频器和RCC时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 每个定时器都是完全独立的,没有互相共享任何资源。 时基单元 软件可以读写计数器CNT、自动重装载寄存器ARR和预分频寄存器PSC,即使计数器运行时也可以操作。 当前计数值寄存器CNT 向上计数,可随时修改 自动重装载寄存器ARR 可随时修改,具有影子寄存器,根据TIMx_CR1寄存器中的自动重装载预加载使能位(ARPE),写入ARR寄存器的内容能够立即或
[单片机]
【<font color='red'>STM32</font>】HAL库-通用定时器
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved