基于电力线载波的路灯控制系统设计

发布者:淡雅时光最新更新时间:2016-08-25 来源: eefocus关键字:电力线载波  路灯控制系统 手机看文章 扫描二维码
随时随地手机看文章
电力线通信技术是利用电力线传送数据和语音信号的一种通信方式。该技术将载有信息的高频信号加载到电力线上,用电线进行数据传输,通过专用的电力线调制解调,将高频信号从电力线上分离出来,传送到终端设备[1]。本文在我国配电网分布广泛的基础上,研究和设计了一种以电力线载波传输的方式对路灯进行控制的系统。


1 系统设计

由于电力线在进行跨变压器传输时信号衰减大,所以根据实际需求可以采用GPRS无线网络通信的方式传输或者通过路由接入广域网实现跨地区数据通信。管理人员只需要对计算机进行操作,通过电力线进行数据传输,就能对路灯的开关状态进行控制和对路灯的运行状态进行查询,实现对路灯及时有效的管理控制。

1.1 设计思路

路灯控制系统由主控中心、路灯智能控制中心、路灯控制盒三大部分组成。配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送,主控中心可以通过GPRS无线通信网络或路由器与路灯智能控制中心实现数据传输。智能控制中心接收到主控中心的命令后再通过电力线载波的方式将监控中心的命令传送到各支路的路灯分控盒。与此同时,路灯智能控制中心通过电力线载波模块对每一个路灯的温度、亮度、电压、电流等情况进行检测,并向主控中心发送电压电流异常报警、路灯故障报警、超高温度报警等信息,以达到对每个路灯进行管理控制的目的。如图1所示。


1.2 硬件设计

主要对路灯控制系统的控制器模块与电力线传输模块的接口和电力线传输模块进行设计。

1.2.1 MI200E电力线载波芯片

电力传输模块选用上海弥亚微公司生产的MI200E电力线载波通信芯片,它采用复杂的正交调制原理,该原理应用在信号衰减变化剧烈的电力线传输中有极大的优越性。相比较于当前主要的窄带通信方式、扩频通信方式、正交频复用技术,它能够更有效地阻止相位和正交之间的关联所带来的消极影响。MI200E是专门针对低压电力线进行优化设计的高集成度、高性能的电力线载波通信芯片,具有通信可靠,抗干扰能力强等特点,用户可以非常容易地将模块嵌入到系统中[2]。

1.2.2 控制器模块

选用LM3S6916的32位ARM处理器作为智能控制中心的控制器,它支持最大主频为50 MHz的ARM Cortex-M3内核,集成的嵌套向量中断控制,它相比于其他控制器的最大优势在于其集成了100 MHz的以太网[3]。当智能控制中心与主控中心处于不同的局域网时,计算机通过路由器与广域网连接,只要对IP地址进行配置就能实现通信,或者也可以采用GPRS无线网络模块进行数据通信。控制器与电力线传输模块采用SPI接口,它不需要进行寻址操作,且为全双工通信,简单而高效,最高速率可达几Mb/s。接口硬件原理图如图2所示。

控制器LM3S6916的CPU主频采用6 MHz、3.3 V的电源供电,25 MHz晶振用于网络数据的传输,系统采用按键复位操作。CS是MI200E的片选输入,SDO是串行数据输出,SDI是串行数据输入,SCK是串行时钟输入。读指令时,将片选信号CS设置为低电频,此时SDO为高阻态,串行数据由SDI输入,并且时钟信号SCK的上升沿被锁存。写指令时,数据在时钟信号SCK的下降沿由SDO输出。PLC_AC接通电源后,通过电力线载波的传输方式实现数据的发送和接收。

1.2.3 电力传输模块

智能控制中心的控制器通过电力载波模块与分控盒电力载波模块实现数据传输。由于MI200E电力线载波芯片高度集成的特点,使得它的外围电路设计非常简单,故本设计选用MI200E作为电力线载波通信芯片,电路原理图如图3所示。

MI200E的模拟电源AVDD和数字电源DVDD分别并接入10μF的电解电容和100 nF的电容,对电源进行滤波。电路设计中在数字电源DVDD和模拟电源AVDD间串接入磁珠,降低了数字信号对模拟信号的干扰。为了减少220 V电压对电力载波芯片的冲击,本设计还在VAC+和VAC-上分别串联5.1 MΩ和220 kΩ的电阻后接入电力线。MI200E能根据不同的要求选择不同的载波速率,本设计采用1 920 b/s的传输速率、12 MHz的晶振频率,由PA和PB以76.8 kHz的载波信号输出,载波信号经过耦合电路后发送到电力线。RAI+和RAI-接收电力线上76.8 kHz的载波信号,MI200E载波芯片对数据信号进行解调后作相应的数据处理。

2 软件设计

软件设计用Keil uVision3作为LM3S6916的编程开发工具,主程序设置时间中断,每隔2 ms对MI200E的内部寄存器进行查询。发送数据时,MI200E先以200 b/s的速率传输帧头、波特率和数据长度。然后用户可以根据要求重新配置模式寄存器,改变发送数据的波特率。MI200E具有硬件自动校验功能,可直接从寄存器中读出较验值。接收数据时,先将发送数据时设置的波特率和数据长度写入寄存器,硬件完成CRC校验后,检查接收的数据是否正确。系统一直默认为接收数据状态,接收数据流程图如图4所示。


3 系统测试

将系统的控制中心模块通过网口与智能控制中心模块连接,智能控制中心模块通过电力线与分控盒模块连接。通过网络调试助手对智能控制中心与分控盒通过电力线载波通信进行了多次测试,实现了两者之间的可靠通信。主控中心通过电力线载波方式对路灯实现强制开灯、关灯、上传系统时间、上传路灯运行参数,实现了对路灯的监控与控制要求。本地端口号为默认的4 374,本地的IP地址为192.168.1.55,设置服务器即智能控制中心的端口号为5 000, IP地址为192.168.1.191。通过网络口调试助手对智能控制中心与分控盒通过电力线载波通信进行了多次测试,实现了两者之间的相互通信。系统网络测试如图5所示。

以太网帧传输协议测试结果显示,上传强制开灯或关灯命令,路灯分控盒返回数据SGGOPL<1KPGO00000000表示1号路灯开灯或关灯成功。上传系统时间命令返回数据0001UTGO,对应十六进制数据为30 30 30 31 55 54 47 30 20 10 12 02 04 02 16 46 OD OA,即系统时间为20 10 12 02 04 02 16 46,表示2010年12月2日星期四2点16分46秒。上传路灯运行参数命令返回数据0002UPGO,对应十六进制数据为30 30 30 32 55 50 47 30 F1 46 46 00 00 00 00 01 01 DE OD OA,即路灯运行参数为F1 46 46 00 0000 00 01 01 DE,转换成十进制数为241 70 70 0 0 0 0 1 1 222,表示继电器开关状态241、路灯运行模式70、路灯强制/自动方式70、路灯亮度值0、环境亮度00、环境温度01、CPU温度1222。

电力线是一个广泛存在的网络,利用这一优势,不需要对路灯系统重新架设网络,只要利用已有的配电网就可以进行数据的传输,这在很大程度上降低了基础建设和维护的成本。本文选用的MI200E作为电力线载波通信模块,它能实现数据稳定可靠的传输,在此基础上研究和设计了一种基于电力线载波的方式对路灯进行控制的系统。系统的实现表明,方案设计可行,性能稳定可靠,可为今后“低碳”经济提供借鉴[4]。

关键字:电力线载波  路灯控制系统 引用地址:基于电力线载波的路灯控制系统设计

上一篇:LPC2368 can波特率学习
下一篇:基于ARM-Linux及嵌入式Web技术的远程程控电源插座系统设计

推荐阅读最新更新时间:2024-03-16 15:06

电力线载波扩频通信调制模块的设计
电力线载波扩频通信调制模块的设计 通常扩频通信系统的解调电路很复杂,本系统为了使解调电路简单化,采取基带信号速率与扩频码元周期同步同速的特殊措施,省去了解调电路中复杂的载波恢复电路。直接序列扩频通信系统中,接收端与发送端必须实现载波同步、PN码同步,才可以正常工作。同步系统是扩频通信的关键技术。 1 本扩频系统的调频解调原理 本系统的载波,PN码和基带信号的速率来自于同一个时钟源,而且载波频率和PN码频率都是基带信号速率的整数倍,所以系统在解调端获得PN码同步的同时,也获得了载波的同步。 2 系统总体设计及参数选择 本系统设计其顶层采用图形设计方式,各模块基于Verilog HDL设计。图1为系统模块图。 基带数据的码
[模拟电子]
<font color='red'>电力线</font><font color='red'>载波</font>扩频通信调制模块的设计
基于51单片机的智能路灯照明控制系统
硬件设计 仿真文件1: 功能如下图所示 原理图 仿真文件2: 程序设计 /******定义头文件**************/ #include reg52.h #include INTRINS.H #include lcd.h #include ds1302.h /******类型重定义*************/ typedef unsigned char uchar; typedef unsigned int uint; /******引脚定义***************/ sbit key_1 = P1^0; //定义4个按键 sbit key_2 = P1^1; sbit key_3 =
[单片机]
基于51单片机的智能<font color='red'>路灯</font>照明<font color='red'>控制系统</font>
基于PLC与GPRS、ZigBee的路灯无线控制系统
    随着我国经济建设的发展,能源的开发和利用也显得日益紧张起来。3月份以来,我国多地出现淡季“电荒”现象,而电能利用效率低下是导致“电荒”的重要原因之一,在这种情况下,提高电能效率迫在屠睫。而随着城市路网建设的不断发展,路灯数量增多,使得人们对电能节约以及路灯的管理要求也越来越高。采用先进技术节约能源以及提高路灯自动化控制与管理水平,已成为城市照明系统建设的当务之急。 1 路灯照明管理现状     1)照明设施开关灯统一性差,智能化水平低,不具备远程修改开关灯时间,不能根据实际情况修改开关灯时间,能源浪费大,增加了财政负担;     2)路灯设备分散,管理人员少,管理困难,不能实时、准确、全面地监控设备运行状况,缺乏灵活的控制
[电源管理]
基于PLC与GPRS、ZigBee的<font color='red'>路灯</font>无线<font color='red'>控制系统</font>
PL2101在路灯控制系统中的应用
摘要:新型直序扩频半双工异步调制解调顺PL2101具有功能多、抗干扰能力强等特点。利用它通过电力线载波应用系统可实现路灯的集约化及自动化管理和控制。文中介绍了用PL2101对路灯进行集约化自动控制设计的基本原理及软硬件实现方法,同时给出了其设计原理图和主、从控站的程序流程图。 关键词:电力线载波 路灯控制 PL2101芯片 通信协议 1 引言 为实现校园路灯控制的自动化,笔者应用PL2101芯片开发了基于电力线载波的路灯控制系统。该系统采用电力载波通信方式,它将所有的路灯连接到计算机上,并通过计算机监视所控区域内的路灯工作状态,可随时设定开关时间、路灯开启比例或单独革一个路灯的开与关。任一路路灯的工作电流和温度均可随时查询
[传感技术]
CEWayPL-III电力线载波模块及其应用
    摘 要:介绍一种电力线载波模块CEWay PL-III的电力线载波收发器及其在所设计的远程抄表系统中的应用。由其构成的远抄系统可靠性高,误码率低,便于组网,所以很有使用价值。     关键词: 电力线载波 扩频通信 CEBus标准     目前,电能表远程抄表及远控系统越来越受到电力部门的重视。其远抄远控系统的关键技术之一为数据的传远,通过电力线载波通信传远有着无可比拟的优势,比如,采用原有的电力线作为通信媒质,节省大量的人力、物力和财力资源;电力线遍布城乡,组网方便;所采用的扩频技术具有很强的抗干扰和抗衰减能力等等。这些优点使得这种通信方式很有发展前途。     目前已有几种用于电力线
[应用]
基于Ethernet的低压电力线载波阻抗动化测试系统
电力线网络分布广泛,其接入的负载复杂多样并具有时变性,载波信道的阻抗匹配与否严重影响着电力线载波的可靠、实时传输 。在电网处于工作状态时,人们会测量电网载波信道的阻抗值,通过这些数据来优化载波信号,保障载波通信和抄表的质量。DZ3载波阻抗测试装置正是用于测量低压电力线的载波信道阻抗,它主要由主站和终端两部分组成。 主站通过向测试终端发送统一格式的报文指令来控制终端的具体操作。主站负责接收、存储终端测试所得的数据,并对终端上传的数据进行相关处理。终端依据自由坐标轴阻抗测试原理,可测量80 kHz~500 kHz量程范围内的低压电力线载波信道阻抗的模值和相位 。每个终端都配有一个独一无二的ID号。当终端与主站连接成功时,主站管理软
[测试测量]
带远程监控的路灯照明 节电控制系统设计
0 引言 照明是城市基础设施的组成部分,在城市的交通安全、社会治安、人民生活和市容风貌中居于举足轻重的地位,并发挥着不可替代的作用,也标志着城市实力和成熟的程度。现有的城市路灯70%以上使用的都是高压钠灯,其设计寿命为24 000小时(5年)。但是,由于电压波动大,许多地区的波动甚至超过额定电压的15%,特别是在后半夜,由于电负荷减少,使得电网电压有时接近245 V,高电压不但浪费了电能,还缩短了灯泡的使用寿命,事实上,现在城市路灯的实际使用寿命平均不到一年。 目前,在供电电源端节能的方式主要有两种,一是采用半夜灯,二是采用调压方式。并夜灯是通过在下半夜关掉一部分照明灯的方法来达到节能,它具有简单易行的特点,缺点是道路
[电源管理]
基于单片机的智能太阳能路灯控制系统的设计方案
摘要:随着世界能源危机日益严重,利用太阳能成为解决能源问题的一大途径,在此背景下开发智能太阳能路灯意义重大。本文介绍了智能太阳能路灯系统的组成及工作原理,采用LPC935 单片机作为主控制器,结合密封铅酸蓄电池充电专用芯片UC3906,实现了对密封铅酸蓄电池最佳充电所需的全部控制和检测功能,延长了系统的使用寿命。通过热释电红外、微波双鉴传感器技术及以无线通讯技术,实现了红外微波探测、相邻路灯间的无线通讯以及主副灯的智能化切换,达到了节能减排的效果。   随着科学技术的迅速发展,世界能源危机日益严重,利用常规能源已不能适应世界经济快速增长的需要,开发和利用新能源越来越引起各国的重视。太阳能源本身的安全可靠、无噪声、无污染和可再
[工业控制]
基于单片机的智能太阳能<font color='red'>路灯</font><font color='red'>控制系统</font>的设计方案
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved