关于STM32串口的理解

发布者:橙子1234最新更新时间:2016-09-12 来源: eefocus关键字:STM32  串口 手机看文章 扫描二维码
随时随地手机看文章

      总的来说,STM32单片机的串口还是很好理解的,编程也不算复杂。当然我更愿意希望其中断系统和51单片机一样的简单。

      对于接收终端,就是RXNE了,这只在接收完成后才产生,在执行USART_ITConfig(USART1, USART_IT_RXNE, ENABLE)代码时不会进入ISR。但麻烦的就是发送有关的中断了:TXE或者TC,根据资料和测试的结果,TXE在复位后就是置1的,即在执行USART_ITConfig(USART1, USART_IT_TXE, ENABLE)后会立即产生中断请求。因此这造成一个麻烦的问题:如果没有真正的发送数据,TXE中断都会发生,而且没有休止,这将占用很大部分的CPU时间,甚至影响其他程序的运行!

      因此建议的是在初始化时不好启用TXE中断,只在要发送数据(尤其是字符串、数组这样的系列数据)时才启用TXE。在发送完成后立即将其关闭,以免引起不必要的麻烦。

       对于发送,需要注意TXE和TC的差别——这里简单描述一下,假设串口数据寄存器是DR、串口移位寄存器是SR以及TXD引脚TXDpin,其关系是DR->SR->TXDpin。当DR中的数据转移到SR中时TXE置1,如果有数据写入DR时就能将TXE置0;如果SR中的数据全部通过TXDpin移出并且没有数据进入DR,则TC置1。并且需要注意TXE只能通过写DR来置0,不能直接将其清零,而TC可以直接将其写1清零。

      对于发送单个字符可以考虑不用中断,直接以查询方式完成。

      对于发送字符串/数组类的数据,唯一要考虑的是只在最后一个字符发送后关闭发送中断,这里可以分为两种情况:对于发送可显示的字符串,其用0x00作为结尾的,因此在ISR中就用0x00作为关闭发送中断(TXE或者TC)的条件;第二种情况就是发送二进制数据,那就是0x00~0xFF中间的任意数据,就不能用0x00来判断结束了,这时必须知道数据的具体长度。

      这里简单分析上面代码的执行过程:TXE中断产生于前一个字符从DR送入SR,执行效果是后一个字符送入DR。对于第一种情况,如果是可显示字符,就执行USART_SendData来写DR(也就清零了TXE),当最后一个可显示的字符从DR送入SR之后,产生的TXE中断发现要送入DR的是字符是0x00——这当然不行——此时就关闭TXE中断,字符串发送过程就算结束了。当然这时不能忽略一个隐含的结果:那就是最后一个可显示字符从DR转入SR后TXE是置1的,但关闭了TXE中断,因此只要下次再开启TXE中断就会立即进入ISR。对于第二种情况,其结果和第一种的相同。

     对于第一种情况,其程序可以这么写:其中TXS是保存了要发送数据的字符串,TxCounter1是索引值:

extern __IO uint8_t TxCounter1;
extern uint8_t *TXS;
extern __IO uint8_t TxLen;

void USART1_IRQHandler(void)
{
if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET)

if(TXS[TxCounter1]) //如果是可显示字符
{ USART_SendData(USART1,TXS[TxCounter1++]);}
else //发送完成后关闭TXE中断,
{ USART_ITConfig(USART1,USART_IT_TXE,DISABLE);} 

}

  对于第二种情况,和上面的大同小异,其中TXLen表示要发送的二进制数据长度:

void USART1_IRQHandler(void)
{
if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET) //对USART_DR的写操作,将该位清零。

if(TxCounter1 { USART_SendData(USART1,TXS[TxCounter1++]);}
else //发送完成后关闭TXE中断
{ USART_ITConfig(USART1,USART_IT_TXE,DISABLE);} 

}

    事实上第一种情况是第二种的特殊形式,就是说可以用第二种情况去发送可显示的字符——当然没人有闲心去数一句话里有多少个字母空格和标点符号!

      在使用时,只要将TXS指向要发送的字符串或者数组,设置TxLen为要发送的数据长度,然后执行USART_ITConfig(USART1,USART_IT_TXE,ENABLE)就立即开始发送过程。用户可以检查TxCounter1来确定发送了多少字节。比如以第二种情况为例:

uint32_t *TXS;
uint8_t TxBuffer1[]="0123456789ABCDEF";
uint8_t DST2[]="ASDFGHJKL";
__IO uint8_t TxLen = 0x00;

TxLen=8; //发送8个字符,最终发送的是01234567
TXS=(uint32_t *)TxBuffer1; //将TXS指向字符串TxBuffer1
TxCounter1=0; //复位索引值
USART_ITConfig(USART1, USART_IT_TXE,ENABLE); //启用TXE中断,即开始发送过程
while(TxCounter1!=TxLen); //等待发送完成

TXS=(uint32_t *)TxBuffer2; //同上,最终发送的是ASDFGHJK
TxCounter1=0;
USART_ITConfig(USART1, USART_IT_TXE,ENABLE);
while(TxCounter1!=TxLen);

       以上就是我认为的最佳方案,但串口中断方式数据有多长就中断多少次,我认为还是占用不少CPU时间,相比之下DMA方式就好多了,因为DMA发送字符串时最多中断两次(半传输完成,全传输完成),并且将串口变成类似16C550的器件。关于DMA方式的这里就不介绍了,有空再说。


关键字:STM32  串口 引用地址:关于STM32串口的理解

上一篇:STM32外部中断详解
下一篇:stm32 霍尔传感器接口

推荐阅读最新更新时间:2024-03-16 15:09

STM32学习总结之Sysstick(系统滴答定时器)
学习内容: 1、Cortex-M3 在内核部分 包含了一个简单的定时器——SysTick timer STM32内核有一个定时器。 2、有定时器就需要有时钟源,时钟源可以是内部的还可以是外部的,需要阅读使用手册确定什么作为时钟源。 在STM32 中SysTick 以 HCLK(AHB 时钟)或HCLK/8 作为运行时钟 3、SysTick 是一个24 位的定时器,即一次最多可以计数2^24 个时钟脉冲,这 个脉冲计数值被保存到 当前计数值寄存器STK_VAL(SysTick current value register) 中,只能向下计数,每接收到一个时钟脉冲STK_VAL 的值就向下减1,直至0,当STK_VAL 的值被
[单片机]
<font color='red'>STM32</font>学习总结之Sysstick(系统滴答定时器)
其实,STM32有隐藏的定时器~
DWT 在Cortex-M里面有一个外设叫DWT(DataWatchpoint andTrace),是用于系统调试及跟踪,DWT的中文名字应该是:数据观察点触发。在STM32用户手册的第32章节Debugsupport (DBG)有如下框图。 明显DWT属于DBG部分的功能,从上图的标题可以看出DWT属于CortexM3内核的,理论上M3内核的MCU都支持的,这个下文会说明。在这里我将其称之为“隐藏的定时器”,因为他可以代替定时器外设实现上文提到延时功能和测量代码运行时间的功能,DWT不能代替定时器的其他功能。 之所以DWT可以实现延时功能,因为它有一个32的计数器CYCCNT,这是一个向上计数的计数器,当它溢出时会自动清零并
[单片机]
STM32开发板的TIM3开启和关闭
关闭定时器中断要考虑好多情况 1)关闭定时器时,定时器是否在处在工作状态 2)关闭定时器时,定时器是否正好进入中断,造成关闭程序出现断层,进而无法实现完整关闭程序,此时可以使用高一级别的外部中断强制进入外部中断服务函数进行关闭程序 3)关闭定时器时,关闭定时器的程序是否在定时器服务函数里面?还是在总函数里面?还是在外部中断服务函数里面?是需要考量的? 4)关闭定时器时,定时器的中断触发时间是否太紧凑?定时器的中断总次数是否太小?都会影响关闭定时器程序运行的连续性。 以下为关闭程序: 首先打开时钟,然后才能进行关闭操作。 RCC- APB1ENR|=1 1; //TIM3时钟使能 TIM3- ARR=arr; //设定计数器自
[单片机]
判断STM32 GPIO输入口的输入状态(高电平或低电平)
以PE2和PE4为例: ① 判断单个端口是否为高电平: if(GPIOE- IDR& GPIO_IDR_IDR2) { 函数体; } 当PE2端口为高电平时,if条件为真;当PE2口为低电平时,if条件为假; ② 判断单个端口是否为低电平: if((~GPIOE- IDR)& GPIO_IDR_IDR2) { 函数体; } 分析:首先通过 &GPIO_IDR_IDR屏蔽掉PE2之外的其他PE口。当PE2为高电平时,GPIO-〉IDR的bit2为‘1’,取反后为‘0’,因此条件为假;当PE2为低电平时,GPIO-〉IDR的bit2为‘0’,取反后为‘1’,因此条件为真;通过此方法
[单片机]
STM32 UART串口驱动程序
示例1.通过UART1进行数据发送 UART 1 的初始化 /** * @brief UART1 Initialise. * @param None. * @retval None. */ void UART1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); //UART1 选择对应UART的RCC时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GP
[单片机]
如何配置stm32中断的优先级
写作原由:因为之前有对stm32 优先级做过研究,但是没时间把整理的东西发表,最近项目需要2个串口,但是不是两个串口同时使用,只是随机使用其中一个,程序对2个串口的优先级需要配置; 此文思路:“中断优先级”思维导图--》关键要点---》结合图和要点相关程序应用例程讲解; 我们先来看ST公司的一张图: 我自己依据此图理解,应用思维导图画了一张方便理解:(如果看不清可通过ctrl+鼠标滑轮 放大看;) 前提条件1:组别优先顺序(第0组优先级最强,第4组优先级最弱):NVIC_PriorityGroup_0》NVIC_PriorityGroup_1》NVIC_PriorityGroup_2》NVIC_PriorityGrou
[单片机]
如何配置<font color='red'>stm32</font>中断的优先级
STM32单片机中使用SPI通信的方法
  在本教程中,我们将使用 STM32F103C8 的 Blue Pill 板替换一个 Arduino 板,并将使用 SPI 总线与 Arduino 板进行通信。在这个STM32 SPI 示例中,我们将使用Arduino UNO作为 Slave,STM32F103C8 作为 Master,两个16X2 LCD 显示器分别连接在一起。两个电位器还与STM32(PA0)和Arduino(A0)相连,通过改变电位器来确定主机到从机和从机到主机的发送值(0到255)。   STM32F103C8中的SPI   比较 Arduino 和 STM32F103C8 Blue Pill 板中的 SPI 总线,STM32 有2 条 SPI 总线
[单片机]
在<font color='red'>STM32</font>单片机中使用SPI通信的方法
如何利用定时器产生PWM波
摘要:利用定时器产生PWM波。然后利用32的外部中断和定时器来测量32输出的波形硬件:STM32F103C8T6核心板、示波器、串口调试助手所用到的的引脚为PA8和PA0。 测量方案:在第一次外部中断(上升沿触发)到之时,开启定时器,同时计数器清零。然后等待第二次中断到来,在第二次外部中断(上升沿触发)到之时,获取计数器的计数值,同时关闭计数器。因为知道了计数器计数一个数的时间,所以在第二次外部中断(上升沿触发)到之时,获取计数器的计数值,通过这个值就知道一个脉冲的时间周期。时间周期的倒数就是外部信号的频率。 一、利用TIM1的CH1产生PWM波 pwm.c #include pwm.h voidTIM1_PWM_Init
[单片机]
如何利用定时器产生PWM波
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved