超低功耗低测量频率数据采集记录系统的设计

发布者:中原读书客最新更新时间:2016-10-21 来源: elecfans关键字:超低功耗  低测量频率  数据采集  记录系统 手机看文章 扫描二维码
随时随地手机看文章
1 引 言
  在诸如环境监测、气象监测中,常常需要长时间地采集记录变化缓慢的过程。这对数据采集记录系统提出了低测量频率、低功耗、微型化和可与计算机联接的要求,以适于电池供电、现场化安装以及便于计算机存储和分析。传统的基于微控制器A/D采样芯片外部存储器的系统有功耗大、集成度低等缺点。为克服这些缺点,我们以AD公司数据采集器芯片ADμC812为核心,采用多种方法有效地提高了系统集成度并大幅度降低了功耗。由于采用了在线可编程技术,系统软件在线修改成为可能,系统能通过装入不同的程序很好地适用于多种应用场合。
  本文介绍的系统由采集记录器、上下载器和系统软件三大部分构成,采集记录器由电池供电,安装于现场,可脱离系统按程序自动完成数据的采集和记录;上下载器是记录器与微机的硬件接口,完成采集程序的下载和采集完成后的数据上传;系统软件是采用C++Builder编制的WINDOWS9X应用程序,可以集中定制采集记录器的采样参数,并完成记录器结果的读入存储和分析处理。系统的工作主要有以下几步:
  (1)在实验室计算机上定制采样程序并通过上下载器下载到采集记录器;
(2)将采集记录器安装到现场;
  (3)采集记录器按照定制的采样程序完成采样和记录工作;
  (4)从现场取回采集记录器或使用便携计算机到现场通过上下载器上载数据记录;
  (5)分析存储的数据记录。
2 系统硬件设计
  在硬件设计中,应用于现场的采集记录器体积要尽可能小,功耗要尽可能低。因此,将与计算机连接的上下载器部分与采集记录器分离,可减小采集记录器的体积并降低功耗。
2.1 采集记录器
  采集记录器由数据采集器ADμC812、非易失性存储器、时间基准、电池、电压变换及电源控制器几部分组成,其原理框图如图1所示。
2.2 数据采集器ADμC812
    A/D公司数据采集芯片ADμC812是整个系统
的核心。ADμC812是以8051全兼容内核为控制核心,集成了12位、8通道A/D转换器和2个12位电压输出的D/A转换器、8K字节闪速/电可擦除内部程序存储器、640字节闪速/电擦除数据存储器、256字节内部RAM,具有集成的UART串行I/O,I2C总线和SPI总线。
  与传统的由MCU+A/D+ROM+RAM构成的采集系统板相比,集成化的数据采集器件ADμC812有很明显的优势:
  (1)全集成化的设计极大地减小了电路板面积、降低了成本、增加了可靠性。
  如果采用由MCU+A/D+ROM+RAM构成的采集系统板,以使用最常用的8051+AD1674+27256+6164为例,需要大约100mm×100mm的电路板面积,而ADμC812具有完全相同的功能,其芯片面积仅13.5mm×14mm,加上外围器件,电路板面积不足前者的五十分之一,大大地缩小了系统的线路板面积,使线路板的现场化设计成为可能。由于可以以很小的电路板面积实现数据采集记录的功能,所以线路板可以根据数据采集现场的要求,安装在传感器、仪表、管道中等等最靠近数据采集现场的地方,极大地提高现场数据的精确可靠性。
   (2)明显降低了功耗。
  ADμC812采用了微功耗设计,3V供电(也可使用5V),更适合于电池供电的系统使用。器件有正常、空闲和掉电三种模式,可以用于调节芯片功耗,从而使功耗降至最低。
2.3 非易失性存储器
  对于独立工作的数据采集记录系统来说,数据记录的存储可靠性和存储容量是至关重要的。传统的数据采集系统以RAM作为存储介质,掉电后数据消失,不可恢复,这就对RAM的供电和电源后备电路设计提出了较高的要求,不利于降低系统的功耗。随着技术的发展,电可擦除PROM即EEPROM得到了越来越广泛的应用。EEPROM可在线擦写,掉电数据不丢失,可擦写超过百万次,理论上,掉电
数据可以保存超过200年,有明显的优越性。  本系统使用的数据存储器24LC256,为CMOS串行I2C总线EEPROM,采用2.5V~5.5V电压供电,容量为32K字节,8脚SOIC封装,有很小的体积和极低的功耗。
  串行存储器与并行存储器相比管脚数少,体积小,功耗低,适用于电池供电的现场采集系统。它使系统具有更高的线路面积与存储容量比。
2.4 时间基准与电压变换
  时间基准采用串行可编程实时钟PCF8593,3V供电,工作电流小于1μA,工作状态可编程。在本系统中,用于定时产生系统启动信号。
  由于系统采用了3.6V电池供电,而采集系统电压要求稳定于3.0V,故采用电压变换芯片MAX639。MAX639具有稳压、电池欠压检测和电平可控关断功能,与PCF8593配合,可以完成系统的定时开启和关断。
2.5 上下载器
  上下载器是采集记录系统与计算机的通信适配器。在连接后,采集记录系统将转入在线编程/上载数据状态,根据由计算机发来的命令,完成采集程序的定制或历史数据的上传。将上下载器设计为独立的适配器,有助于进一步减小采集记录系统在数据采集现场的线路板面积,使系统更容易适应现场应用。
  由于串行通讯的通用性好,可以很方便地与不同档次的台式机或便携机实现通讯,可靠性好,程序的编写简单,故本系统采用了串行通讯的方式与计算机相连接。
3 系统软件设计
  系统软件运行于个人计算机上,完成采样程序的定制与下载、采样数据的上传与记录分析。采用C++Builder编写,运行于WINDOWS9X,WINDOWS2000操作系统平台。
3.1 通讯握手方式
  由于与数据采集器的连结采用串行通讯方式,为增加程序的通用性,程序使用了Mscomm控件,采用了中断加查询的方式,并引入了定时器以确定查询响应超时与否。首先,计算机发出查询信号并等待采集记录器的应答以确定连接是否正常。若设备正常,采集记录器在接收到查询信号后应该在一个足够短的时间内发出应答信号,从而表明连接正确,  握手成功。如果计算机在一个规定的时间内(如100ms)没有接收到应答信号,则返回超时错误,这时计算机会重新发送查询信号,如果连续超时3次,则证明系统连接失误或硬件有问题,将返回出错信息。
3.2 数据通讯格式
  对于数据通讯,采用打包的方式。数据包的长度和格式在数据通讯开始前的握手联络中确定。由于采集记录器RAM大小的限制,本系统数据块长度定为64字节,数据格式如下:起始标志(1Byte)|数据段号(1Byte)|数据块(64Byte)|校验字节(1Byte)|结束标志(1Byte)
3.3 数据校验与数据处理
  采用异或算法进行数据校验。即发送时将数据块中数据从起始字节起按位顺次异或运算得到校验字节,与接收到的数据用同样方法得到的校验字节相比较,如果校验字节相同,则表明发送成功,否则认为数据错误,需要重新发送直至成功为止。
  软件在成功地上载数据后,可以将数据以数据文件形式(二进制或文本)保存在硬盘上,并可以进行例如作图等简单的数据处理工作。
4 降低系统功耗的方法
  本系统主要用于现场长时间无人监控的环境,大多数情况下现场无电源,需要使用电池供电,这就对系统的低功耗提出了很高的要求。
  对于典型的MCU为核心的微控制系统,常用的降低功耗的方法有以下几种:
   (1)利用系统的空闲(睡眠)模式、掉电模式  大部分MCU(微程序控制器):都提供了空闲(睡眠)的工作模式,在这种模式下,振荡器仍然运行并向中断逻辑、串行口和定时器/计数器提供时钟,但不向CPU提供时钟,CPU相关寄存器状态保持不变,内存数据不丢失。这种状态可以用中断方式唤醒。这种方式下,空闲方式唤醒到正常模式的方法比较灵活,可以被外部中断、定时器或看门狗中断唤醒,唤醒速度很快,但功耗降低得较少。
  掉电方式下,振荡器停止振荡,除了内部RAM的数据被保存外,所有的一切工作都被停止,只有硬件复位信号维持10ms可以使其退出掉电方式。由于振荡器、中断逻辑和定时器等部分的工作均已停止,所以掉电方式下的功耗要比空闲方式小得多。
   (2)降低时钟频率和电源电压
  时钟频率越高,系统功耗就越大。在实际应用中,计算速度已经不是影响操作时间的主要因素。操作时间主要受外围电路的速度、A/D转换器的采样速度与时间,传感器的响应速度等等外围器件的性能决定。在这种情况下,系统的最小工作时间实际上已经基本确定,相比之下,降低时钟频率,并不会对整个系统的工作时间造成太大影响,却可以显著地降低功耗。
  早期的数字电路大多采用5V供电,随着低功耗技术在集成电路设计中的普及,大部分器件可以工作在3V甚至更低。以ADμC812核心为例,表1的经验公式表明了功耗与时钟频率及电源电压的关系,其中M指时钟频率(单位Hz)。
可见,降低电源电压对功耗的影响是相当明显的。
  鉴于本系统工作时间短而待机时间长的特点,系统采用了采集系统停电待机、时钟唤醒的节电方式,其特点如下:
  电源电压升压变换芯片的开启和关断受时钟芯片中断信号的控制,在实时钟定时中断发生时,电压变换芯片启动向采集系统供电。在采集完后,采集系统通过重清时钟中断状态,关断电压变换芯片。这样,在待机状态下,只功耗极低的实时钟处于工作状态,其它所有电路均处于停电状态,不会有任何功耗发生。只在程序确定的工作时间中系统上电,在完成采集记录任务后立即重新返回停电状态。与传统的利用MCU的空闲或掉电模式降耗相比,这种方法有明显的优势,待机时间越长,这种优势就越明显。  系统的首次启动由人工通过拨位开关完成,首次启动时将初始化时间基准芯片,使其按用户要求的启动频率工作在定时中断的模式下。同时,系统初始化内部数据存储器,设定运行标志,写入采样次数,存储器当前偏移地址,启动时间,出错情况等状态信息并关闭电源芯片。这样,系统将在时间基准的中断发生时再一次启动,而不再需要人工干预。启动后通过检查运行标志,系统将运行在正常工作状态,读入状态信息完成采样记录并刷新状态信息,然后关闭电源芯片完成一次采样循环。软件流程如图2所示。
5 在线可编程技术在数据采集系统中的应用

  对于大部分数据采集系统来说,其硬件需求大多相同,而采样频率、采样时间、放大器设置、采样次数和采样数据的预处理等需要根据不同的工作要求来设置。这些设置一般可以通过修改系统的采集程序软件得以完成。传统的基于MCU的数据采集系统,采集程序是根据需要定制好,一次性写入MCU或外部程序存储器中,如果需要改变程序,则须从线路板上拔下MCU或ROM芯片重新写入程序。在线可编程技术(In- Circuit ReprogrammableTechnique)是一种可以不改动硬件线路而通过特定的连接直接由上位机对软件重新编程的技术。它避免了为重新修改程序而插拔芯片造成的不可靠性,省去了专用的编程设备,而且极大地提高了系统的灵活性,使在线修改升级程序成为可能。在本系统中,只需拨动一个拨位开关,即可将系统从运行状态转入在线下载程序状态,下载完成后恢复设置,重新启动系统即可运行在新的程序下,从而使系统具有了良好的适用性。
6 结束语
  本文介绍了超低功耗的低测量频率数据采集记录系统的软硬件设计,讨论了如何降低系统功耗及在线可编程技术在数据采集记录系统中的应用。本系统已应用于井下数据采集等系统,实践表明,它具有良好的现场适应性,功耗低,工作时间长,体积小,易于使用,达到了预期的效果。

关键字:超低功耗  低测量频率  数据采集  记录系统 引用地址:超低功耗低测量频率数据采集记录系统的设计

上一篇:低频扫频仪的设计与制作
下一篇:keil c51红外遥控解码程序

推荐阅读最新更新时间:2024-03-16 15:16

基于FPGA的数据采集控制模块的研究与设计
   0 引 言   数据采集和控制系统是对生产过程或科学实验中各种物理量进行实时采集、测试和反馈控制的闭环控制,它在工业控制、军事电子设备、医学监护等许多领域发挥着重要作用。其中,数据采集部分尤为重要,而传统的数据采集系统,通常采用单片机或DSP作为控制器,用以控制ADC、存储器和其他外围电路的工作,使得采集速度和效率降低。近年来,微电子技术,如:大规模集成电路和超大规模集成电路技术的发展,为数据采集系统的发展提供了良好的物质基础。从而使器件向模块化和单片化发展,使所用软件均向实时高级语言和软件模块化发展,接口向标准化发展。由于FPGA时钟频率高,内部延时小,全部控制逻辑均由硬件完成,速度快,效率高,同时它有非常强大的硬件描述
[嵌入式]
基于FPGA的<font color='red'>数据采集</font>控制模块的研究与设计
如何对待数据采集设备中测量误差问题
我们的日常工作经常要从显示屏幕上读取测量数据,如汽车仪表盘上用数字表示的速度、实验室温度,或者是示波器上所显示的读数。尽管我们很相信这些测量数据,但它们绝对不是百分之百准确的,汽车速度计上所显示的速度很容易出现几公里/小时的误差,温度测试也可能会相差好几度。速度计上的小小误差还不是什么大问题,但当我们建立一个专业的测量和数据采集系统时,认识可能存在的最大误差是非常重要的。任何数字测量系统都存在一个局限,即代表实际测量值的数字是有限的,其最大数量由所使用的位数决定。 例如一个8位二进制数有28=256个可能值,如果某个速度计使用8位来表示0到255公里/小时范围的速度,则速度值将以1公里/小时的间隔进行显示,因此司机总会有约0.5公里
[测试测量]
如何构建数据采集系统(三)
4 分析处理 我们知道,仅仅拥有传输到上位机的原始测试数据是不够的,工程师所关心的是试验中所感兴趣的结果,例如该旋转设备是否正常运转,或者发动机在各工况下的油耗特性曲线等等。因此,对原始数据进行处理和分析,从而得到想要的结果或结论,在整个数据采集系统中是必要的一环。 常用的分析处理方法有很多,例如均值、插值、拟合或者FFT变 换等,这里需要强调的是,这些方法只能解决最基本的应用需求,对于各个应用领域而言,都有自己一套专业的分析和处理算法和体系。以旋转机械状态监测为例, 对于大型的旋转机械设备而言,工程师需要对电机、发动机、压缩机、电动马达、泵以及传动轴所引起的噪声和振动有充分的认知,而这个过程是非常复杂的。为了 确定噪声和振动
[测试测量]
如何构建<font color='red'>数据采集</font><font color='red'>系统</font>(三)
一种经济高效的低功耗液位测量数据采集系统(DAS)案例
液位测量在工业和商业过程中都有许多应用。从在家中储罐中的水位检测到监视工业上明渠的燃料流,其使用一直在提供安全可靠的系统。也许,液位测量最简单但最重要的应用是在洪水检测系统中,在天气不好的情况下,可以使社区免受洪水的危害。 该参考设计描述了一种非接触式测量方法,用于测量和分配大多数工业液体,它利用数据采集系统(DAS)以及补偿的硅压力传感器和高精度的delta-sigma模数转换器(ADC) 。本文档对于设计各种必须测量和分配工业液体的精密传感和便携式应用的人员很有用。 该参考设计是补偿硅压力传感器应用系列中的第二篇。第一个参考设计5319“液位控制和输送系统使用补偿式硅压力传感器和精密Delta-Sigma ADC,第1
[测试测量]
一种经济高效的低<font color='red'>功耗</font>液位<font color='red'>测量</font><font color='red'>数据采集</font><font color='red'>系统</font>(DAS)案例
电力机车逻辑控制单元测试台硬件系统设计
  0 引言   电力机车逻辑控制单元(Logic Control Unit——LCU)是电力机车上重要的控制部分,它使用现代化的电子元件来取代原来电力机车上的有触点继电器,从而提高了电力机车控制系统的安全性和可靠性。目前,我国生产的新型电力机车上都装置了LCU,而老型电力机车经过大修后,也都加装了该装置。但是,由于电力机车的运行环境通常十分恶劣,在机车逻辑控制单元使用一段时间后,可能会导致LCU故障的发生,所以必须定期对LCU进行全面的检测。本文主要针对SS4G型电力机车LCU测试台的硬件系统提出了一种可行的设计方案。   1 LCU测试台的系统结构   本文中的LCU测试台系统采用的是模块化设计思想,系统的主要功能模块由
[测试测量]
电力机车逻辑控制单元测试台硬件<font color='red'>系统</font>设计
RS485总线在智能抄表系统中的应用
1 引言   智能抄表系统由主站通过传输媒体将多个用户仪表的数据集中抄读的系统。它是用现代化的通讯手段去抄读这些仪表的数据,而不用到现场。智能抄表系统一般是集中抄表系统与数据远程通讯的组合。网络远程集中抄表是工业和民用中新兴的一项实用技术,结合了计算机、网络、信和工业自动化等现代化技术,并随着技术的不断发展而出现许多不同的实现手段。本文详细介绍了RS485总线在这种智能抄表系统中的应用。 2 智能抄表系统硬件设计   2.1 RS485通讯网络设计   RS485总线是工业应用中非常成熟的技术,是现代通讯技术的工业标准之一,采用RS485总线设计网络也是基于这些原因。RS485总线用于多站互连十分方便,用一对双绞线
[嵌入式]
LabVIEW远程数据采集能力的四种实现方法研究
LabVIEW具有强大的远程数据采集能力,实现方法主要有主要4种:方法一, 软件操作界面共享方式, 利用RemotePanels技术实现远程数据采集;方法二, DAQ 设备共享方式,采用RDA 技术实现DAQ 设备的远程控制;方法三,数据发布方式,利用TCP技术实现远程数据采集 ;方法四,数据共享方式,利用DataSocket技术实现远程数据采集。无论采用哪种方式,系统都由通过网络连接的客户机(Client)和服务器( Server)构成,其中DAQ设备安装在服务器上,客户机通过网络控制服务器上的DAQ设备完成数据采集。系统组成如图1所示。 利用Remote Panels技术实现远程数据采集 从LabV IEW 6. 1 开始
[测试测量]
LabVIEW远程<font color='red'>数据采集</font>能力的四种实现方法研究
嵌入式Linux平台的GPS数据采集研究
随着GPS(全球定位系统)和便携移动设备的飞速发展,各种各样以GPS为基础的便携式定位系统相继出现.嵌入式Linux以其开放性、安全性、健壮性和 稳定性越来越成为各种便携设备的主要开发平台,因此GPS模块与嵌入式Linux平台之间的通信成了实现定位系统的基础. GPS模块与嵌入式Linux平台之间进行数据传送,大多采用异步串行传送方式,GPS作为终端设备(DTE)与嵌入式平台之间通过RS-232C串行通 信接口进行数据交换.因此,与GPS的数据通信在实现上即是LinuX下的串口编程,对于两者之间的通信协议,可选的协议有很多种,而NMEA0183是 目前普遍采用的一种。 1 NMEA0183通信协议 NMEA0183是G
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved