STM32的GPIO口的输出:开漏输出和推挽输出

发布者:AngelicHeart最新更新时间:2016-10-23 来源: eefocus关键字:STM32  GPIO口  开漏输出  推挽输出 手机看文章 扫描二维码
随时随地手机看文章
推挽输出与开漏输出的区别:

>>推挽输出:可以输出高,低电平,连接数字器件

>>开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内).

//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 三极管的开漏输出有什么特性,和推挽是不是一回事,
问题:
很多芯片的供电电压不一样,有3.3v和5.0v,需要把几种IC的不同口连接在一起,是不是直接连接就可以了?实际上系统是应用在I2C上面。
简答:
1、部分3.3V器件有5V兼容性,可以利用这种容性直接连接
2、应用电压转换器件,如TPS76733就是5V输入,转换成3.3V、1A输出。
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

开漏电路特点及应用

在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

 

组成开漏形式的电路有以下几个特点:
1. 利用 外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。如图1。
2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。
3. 可以利用改变上拉电源的电压,改变传输电平。如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。
4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。
5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。

应用中需注意:
1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。
2. 上拉电阻R pull-up的 阻值 决定了 逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小。反之亦然。

Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。push-pull是现在CMOS电路里面用得最多的输出级设计方式。
at91rm9200 GPIO 模拟I2C接口时注意!!

一.什么是OC、OD

集电极开路门(集电极开路 OC 或源极开路OD)
open-drain是漏极开路输出的意思,相当于集电极开路(open-collector)输出,即ttl中的集电极开路(oc)输出。一般用于线或、线与,也有的用于电流驱动。
open-drain是对mos管而言,open-collector是对双极型管而言,在用法上没啥区别。
开漏形式的电路有以下几个特点:
1.利用外部电路的驱动能力,减少IC内部的驱动。 或驱动比芯片电源电压高的负载.
2.可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。如果作为图腾输出必须接上拉电阻。接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。如果要求速度高电阻选择要小,功耗会大。所以负载电阻的选择要兼顾功耗和速度。
3.可以利用改变上拉电源的电压,改变传输电平。例如加上上拉电阻就可以提供TTL/CMOS电平输出等。
4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。一般来说,开漏是用来连接不同电平的器件,匹配电平用的。
5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。这种输出的主要目的有两个:电平转换和线与。

6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样你就可以进行任意电平的转换了。
7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。)

8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。

二.什么是线或逻辑与线与逻辑?

在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上.
因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑.

注:个人理解:线与,接上拉电阻至电源。(~A)&(~B)=~(A+B),由公式较容易理解线与此概念的由来 ;

如果用下拉电阻和 PNP 或 PMOS 管就可以构成与非 NAND 逻辑, 或用负逻辑关系转换与/或逻辑.

注:线或,接下拉电阻至地。(~A)+(~B)=~(AB);
这些晶体管常常是一些逻辑电路的集电极开路 OC 或源极开路 OD 输出端. 这种逻辑通常称为线与/线或逻辑, 当你看到一些芯片的 OC 或 OD 输出端连在一起, 而有一个上拉电阻时, 这就是线或/线与了, 但有时上拉电阻做在芯片的输入端内.
顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入.

三.什么是推挽结构
一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路(可惜,图无法贴上)。当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。供你参考。
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。

输出既可以向负载灌电流,也可以从负载抽取电流

关键字:STM32  GPIO口  开漏输出  推挽输出 引用地址:STM32的GPIO口的输出:开漏输出和推挽输出

上一篇:STM32固件库的命名规则
下一篇:AVR的位操作

推荐阅读最新更新时间:2024-03-16 15:17

STM32-快速上手输入捕获
配置步骤 使能定时器(通用定时器在APB1下)和相关IO(APB2下)时钟 void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState); void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState); 初始化IO口为输入模式 void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct); 初始化定时器(主要是配置ARR和PSC) void TIM_TimeBas
[单片机]
STM32入门学习之USART中断(STM32F030F4P6基于CooCox IDE)
#include stm32f0xx.h #include stm32_lib/inc/stm32f0xx_rcc.h #include stm32_lib/inc/stm32f0xx_gpio.h #include stm32_lib/inc/stm32f0xx_usart.h #include stm32_lib/inc/stm32f0xx_misc.h #include delay.h int main(void) { //1、使能时钟 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2
[单片机]
基于keil的contiki系统的stm32移植
一, 全部代码的文件情况 二, keil中文件包含情况 三,源文件的修改情况 1,contiki-2.5(基于这个版本内核),在cpu/arm/stm32f103文件夹下面修改clock.c文件中的函数 void clock_init() { if (SysTick_Config(SystemCoreClock /CLOCK_SECOND)) { while(1); } } void SysTick_handler(void) {current_clock++; if(etimer_pending() && etimer_next_expiration_time() =current_clock)
[单片机]
如何将LCD与STM32F103C8T6 STM32开发板连接并编程
对于任何微控制器项目,将显示单元与它连接将使项目更容易,并吸引用户与之交互。微控制器最常用的显示单元是 16×2 字母数字显示器。这些类型的显示器不仅可用于向用户显示重要信息,还可以在项目的初始开发阶段充当调试工具。因此,在本教程中,我们将学习如何将16×2 LCD显示器与STM32F103C8T6STM32开发板连接,并使用Arduino IDE对其进行编程。 所需材料 STM32蓝丸开发板 16×2 液晶显示屏 FTDI 程序员 连接线 液晶显示器 16×2 点阵 LCD 显示屏简介 如前所述,Energia IDE提供了一个漂亮的库,使接口变得轻而易举,因此不一定要了解显示模块的任何信息。但是,展示我们正在使用的东西不是
[单片机]
如何将LCD与STM32F103C8T6 <font color='red'>STM32</font>开发板连接并编程
ucgui在stm32上的移植
在MDK环境下将3.90版本的UCGUI移植到STM32下了,为了方便大家,特写此移植方法,大家可以借鉴(有错误之处,望大家指点出来共同讨论!) 移植步骤: 第一步:首先,得把你的TFT底层驱动写好,既在裸机下,可以正常显示。 第二步:加入UCGUI程序包。 第三步:配置LCDConf.h GUIConf.h GUITouchConf.h(由于我的液晶不带触摸功能,此配置在此不讲。) 配置LCDConf.h文件如下: #ifndef LCDCONF_H #define LCDCONF_H #define LCD_XSIZE (160) //配置TFT的水平分辨率 #define LCD_Y
[单片机]
STM32自带的SPI实现对外部FLASH(W25Q128)的读写
实验功能:通过KEY1按键来控制W25Q128的写入,通过另外一个按键KEY0来控制W25Q128的读取。 硬件电路: 软件配置: //以下是SPI模块的初始化代码,配置成主机模式 //SPI口初始化 //这里针是对SPI1的初始化 void SPI1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);//使能GPIOA时钟 RCC_APB2PeriphClockCmd(RCC_
[单片机]
STM32分类定义
#define STM32F10X_LD STM32F10X_LD: STM32 Low density devices */ #define STM32F10X_LD_VL STM32F10X_LD_VL: STM32 Low density Value Line devices */ #define STM32F10X_MD STM32F10X_MD: STM32 Medium density devices */ #define STM32F10X_MD_VL VLSTM32F10X_MD_VL: STM32 Medium density Value Line device
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved