STM32 DAC的配置与使用

发布者:Joyful444Life最新更新时间:2016-12-27 来源: eefocus关键字:STM32  DAC  配置与使用 手机看文章 扫描二维码
随时随地手机看文章

STM32 的 DAC 模块(数字/模拟转换模块)是 12 位数字输入,电压输出型的DAC。DAC 可以配置为 8 位或 12 位模式,也可以与 DMA 控制器配合使用。DAC工作在 12 位模式时,数据可以设置成左对齐或右对齐。DAC 模块有 2 个输出通道,每个通道都有单独的转换器。在双DAC 模式下,2 个通道可以独立地进行转换,也可以同时进行转换并同步地更新 2 个通道的输出。DAC 可以通过引脚输入参考电压 VREF+以获得更精确的转换结果。


STM32 的 DAC 模块主要特点有:


①  2 个 DAC 转换器:每个转换器对应 1 个输出通道 


②  8 位或者 12 位单调输出 


③  12 位模式下数据左对齐或者右对齐 


④  同步更新功能 


⑤  噪声波形生成 


⑥  三角波形生成 


⑦  双 DAC 通道同时或者分别转换


⑧  每个通道都有 DMA 功能 


使用库函数的方法来设置 DAC 模块的通道 1 来输出模拟电压,其详细设置步骤如下:


1)开启 PA 口时钟,设置 PA4 为模拟输入。


STM32F103ZET6 的 DAC 通道 1 在 PA4 上,所以,我们先要使能 PORTA 的时钟,然后设置 PA4 为模拟输入。DAC 本身是输出,但是为什么端口要设置为模拟输入模式呢?因为一但使能 DACx 通道之后,相应的 GPIO 引脚(PA4 或者 PA5)会自动与 DAC 的模拟输出相连,设置为输入,是为了避免额外的干扰。


使能 GPIOA 时钟:


RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );    //使能 PORTA 时钟


设置 PA1 为模拟输入只需要设置初始化参数即可:


GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;        //模拟输入


2)使能 DAC1 时钟。


同其他外设一样,要想使用,必须先开启相应的时钟。 STM32 的 DAC 模块时钟是由 APB1提供的,所以我们调用函数 RCC_APB1PeriphClockCmd()设置 DAC 模块的时钟使能。 


RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE );    //使能 DAC 通道时钟 


3)初始化 DAC,设置 DAC 的工作模式。


该部分设置全部通过 DAC_CR 设置实现,包括:DAC 通道 1 使能、DAC 通道 1 输出缓存关闭、不使用触发、不使用波形发生器等设置。这里 DMA  初始化是通过函数 DAC_Init 完成的:


void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct) 


参数设置结构体类型 DAC_InitTypeDef 的定义:


typedef struct


{


uint32_t DAC_Trigger; //设置是否使用触发功能


uint32_t DAC_WaveGeneration; //设置是否使用波形发生


uint32_t DAC_LFSRUnmask_TriangleAmplitude; //设置屏蔽/幅值选择器,这个变量只在使用波形发生器的时候才有用


uint32_t DAC_OutputBuffer;  //设置输出缓存控制位


}DAC_InitTypeDef;


实例代码:


DAC_InitTypeDef DAC_InitType;


DAC_InitType.DAC_Trigger = DAC_Trigger_None;  //不使用触发功能  TEN1=0


DAC_InitType.DAC_WaveGeneration = DAC_WaveGeneration_None;//不使用波形发生


DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;


DAC_InitType.DAC_OutputBuffer = DAC_OutputBuffer_Disable ;  //DAC1 输出缓存关闭 


DAC_Init(DAC_Channel_1,&DAC_InitType);    //初始化 DAC 通道 1


4)使能 DAC 转换通道


初始化 DAC 之后,理所当然要使能 DAC 转换通道,库函数方法是:


DAC_Cmd(DAC_Channel_1, ENABLE);   //使能 DAC1


5)设置 DAC 的输出值。


通过前面 4 个步骤的设置,DAC 就可以开始工作了,我们使用 12 位右对齐数据格式,所以我们通过设置 DHR12R1,就可以在 DAC 输出引脚(PA4)得到不同的电压值了。库函数的函数是:


DAC_SetChannel1Data(DAC_Align_12b_R, 0);


第一个参数设置对齐方式,可以为 12 位右对齐 DAC_Align_12b_R,12 位左对齐DAC_Align_12b_L 以及 8 位右对齐 DAC_Align_8b_R 方式。第二个参数就是 DAC 的输入值了,这个很好理解,初始化设置为 0。


这里,还可以读出 DAC 的数值,函数是:


DAC_GetDataOutputValue(DAC_Channel_1);


 


以下为代码:


//DAC通道1输出初始化

void Dac1_Init(void)

{

    GPIO_InitTypeDef GPIO_InitStructure;

    DAC_InitTypeDef DAC_InitType;

    

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );     //使能PORTA通道时钟

    RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE );     //使能DAC通道时钟

    

    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;                 // 端口配置

     GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;          //模拟输入

     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

     GPIO_Init(GPIOA, &GPIO_InitStructure);

    GPIO_SetBits(GPIOA,GPIO_Pin_4)    ;//PA.4 输出高

    

    DAC_InitType.DAC_Trigger=DAC_Trigger_None;    //不使用触发功能 TEN1=0

    DAC_InitType.DAC_WaveGeneration=DAC_WaveGeneration_None;//不使用波形发生

    DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude=DAC_LFSRUnmask_Bit0;//屏蔽、幅值设置

    DAC_InitType.DAC_OutputBuffer=DAC_OutputBuffer_Disable ;    //DAC1输出缓存关闭 BOFF1=1

    DAC_Init(DAC_Channel_1,&DAC_InitType);     //初始化DAC通道1

    

    DAC_Cmd(DAC_Channel_1, ENABLE); //使能DAC1

    DAC_SetChannel1Data(DAC_Align_12b_R, 0); //12位右对齐数据格式设置DAC值

}

//设置通道1输出电压

//vol:0~3300,代表0~3.3V

void Dac1_Set_Vol(u16 vol)

{

    float temp=vol;

    temp/=1000;

    temp=temp*4096/3.3;

    DAC_SetChannel1Data(DAC_Align_12b_R,temp);//12位右对齐数据格式设置DAC值

}

在使用的过程中,只需要调用 DAC_SetChannel1Data(DAC_Align_12b_R,temp);该函数就可以随意设定需要输出的电压值。


关键字:STM32  DAC  配置与使用 引用地址:STM32 DAC的配置与使用

上一篇:STM32 使用DMA+DAC+TIMER 输出正弦波
下一篇:基于STM32的CRC校验说明

推荐阅读最新更新时间:2024-03-16 15:27

【stm32+uC/OS-II】ucosii移植简单详细步骤
μC/OS-II由Micrium公司提供,是一个可移植、可固化的、可裁剪的、占先式多任务实时内核,它适用于多种微处理器,微控制器和数字处理芯片(已经移植到超过100种以上的微处理器应用中)。同时,该系统源代码开放、整洁、一致,注释详尽,适合系统开发。 μC/OS-II已经通过联邦航空局(FAA)商用航行器认证,符合航空无线电技术委员会(RTCA)DO-178B标准。 ——摘自百度百科 经过三天对uC/OS-II的研究和琢磨,成功移植了自己的uC/OS-II;回首看下,简单的移植是非常简单的;可能这句话比较啰嗦,等我下面解析完之后就认同了; 首先,来附图,我相信只要刚刚认识ucosii的人,都见过这种类型的图了;而且版本
[单片机]
【stm32+uC/OS-II】ucosii移植简单详细步骤
STM32之timer3产生PWM
一、简介 本文介绍STM32系列如何使用timer3的第3通道(PB0)产生38K频率的PWM。 二、实验平台 库版本:STM32F10x_StdPeriph_Lib_V3.5.0 编译软件:MDK4.53 硬件平台:STM32开发板(主芯片stm32f103c8t6) 仿真器:JLINK 三、版权声明 四、实验前提 1、在进行本文步骤前,请先阅读以下博文: 暂无 2、在进行本文步骤前,请先实现以下博文: 暂无 五、基础知识 暂无 六、实验步骤 1、编写并添加PWM驱动 1)编写驱动GUA_Timer3_PWM.c(存放在“……HARDWARE”) //*********
[单片机]
<font color='red'>STM32</font>之timer3产生PWM
STM32+BH1750 光敏传感器获取光照强度
一、环境介绍 MCU: STM32F103ZET6 光敏传感器: BH1750 数字传感器(IIC 接口) 开发软件: Keil5 代码说明: 使用 IIC 模拟时序驱动,方便移植到其他平台,采集的光照度比较灵敏. 合成的光照度返回值范围是 0~255。 0 表示全黑 255 表示很亮。 实测: 手机闪光灯照着的状态返回值是 245 左右,手捂着的状态返回值是 10 左右. 二、BH1750 介绍 三、核心代码 BH1750 说明: ADDR 引脚接地,地址就是 0x46 如果需要完整工程可以去这里下载: https://download.csdn.net/download/xiaolong1126626497/1850
[单片机]
stm32 独立看门狗和窗口看门狗区别
1)独立看门狗没有中断,窗口看门狗有中断 2)独立看门狗有硬件软件之分,窗口看门狗只能软件控制 3)独立看门狗只有下限,窗口看门狗又下限和上限 4)独立看门狗是12位递减的。窗口看门狗是7位递减的 5)独立看门狗是用的内部的大约40KHZ RC振荡器,窗口看门狗是用的系统时钟APB1ENR 1.看门狗介绍 看门狗这东西虽然简单,但我相信绝大多程序员没有足够重视它。使用看门狗保证系统正常地运行是非常有必要的。我们在设计产品时,代码以及硬件设计缺陷或是外界电磁干扰都有可能使系统死机,如果不能正常对其进行复位,系统的可靠性将大打折扣。看门狗分为软件看门狗和硬件看门狗两类,其原理都是使用一个独立定时器来计时,超出时间
[单片机]
STM32单片机学习笔记(4):24C02(模拟IIC)
项目简介 利用CubMX生成基于32单片机的HAl库工程,然后编写程序在proteus上仿真验证。本项目最适合没有开发板的同学学习,零成本利用仿真软件率先入门STM32单片机。这是第四部分针对EEPROM 24C02的一个实例,IIC通信是一种比较典型的串行通信方式,在很多情况下都会有所使用,了解并熟悉IIC通信就显得十分重要。本项目之所以使用模拟IIC,而没有使用STM32单片机内置的硬件IIC,主要由于Half库里IIC的坑太多了,自己一开始也是想通过HAL库来开发,但是始终不成功,也有可能仿真软件也有些坑,如果有能够做出来的大佬,也欢迎评论区或私聊我交流,不过在实物32单片机开发板上网上好像验证过可用,但是手上暂时缺开发板,
[单片机]
<font color='red'>STM32</font>单片机学习笔记(4):24C02(模拟IIC)
STM32闹钟的一个进阶使用
概述: 在使用STM32的过程中,我们在项目中可能经常会用到它的闹钟功能,但是对于刚开始接触STM32闹钟时,我就是直接设置一个闹钟,然后等待中断,有时候如果有两个闹钟,我们可以用ALARM A和B,但是有4个5个或者更多的闹钟设置,这时就不知道怎么办了。我就根据我的使用需求想了一个办法(只涉及几点几分,不考虑年月日及周几),如果你也有这样的需求,可以直接使用,如果不是,也希望可以给你留下一个思考的方向。 思路: 因为我的需求是每天的几点几分有一个闹钟,然后去处理,所以我的思路也很简单,就是将所有闹钟都注册到一个数组里面,然后换算为分钟从小到大进行排序,再根据当前时间去选择我下一个要设置的闹钟是哪一个,比如我已经注册了3个闹
[单片机]
STM32 >> OLED 小屏幕(Code)
我的OLED 屏幕使用I2C 通讯 需要注意的是:把控好通讯的方式及时序准确性即可。 oled.h /** ****************************************************************************** * @file oled.h * @author Waao * @version V1.0.0 * @date 22-Feb-2019 * @brief This file contains some board support package's definition for the LED. * **********
[单片机]
新款STM32U5:让便携产品拥有惊艳图效
凝聚ST超低功耗微控制器技术精华的STM32U5于2021年问世,是一款堪称可改变游戏规则的低功耗MCU。 作为STM32高性能低功耗系列旗舰产品, STM32U5延续STM32F2/F4/F7的应用范围,同时又有更低的能耗,具有更高的性价比。 在工业控制系统中,U5可以承担主控器、系统监控以及图形显示等核心职能。 高性能,低功耗,丰富的数字外设和更高性能的模拟接口,强大的安全特性,以及支持图形加速,让STM32U5在工业控制、工业表计和医疗健康,个人穿戴设备等应用领域取得良好的表现,为泛工业系统创新赋能。在这个视觉统治一切的时代,人们对图形效果的追求永远没有止境,同时也希望实现起来更简单快速,性价比更高。“如果只
[单片机]
新款STM32U5:让便携产品拥有惊艳图效
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved