时钟初始化和GPIO
概述:
本实验的目的是了解用于执行对MSP430 Value Line设备的初始化过程的步骤。在这个练习中,您将编写初始化代码,并运行该设备使用各种时钟资源。
1、写初始化代码
2、运行CPU的MCLK的来源方式:VLO 、32768晶体、DCO
3、主体程序部分
4、观察LED闪光灯速度
MSP430时钟:
1、在MSP430单片机中一共有三个或四个时钟源:
(1)LFXT1CLK,为低速/高速晶振源,通常接32.768kHz,也可以接(400kHz~16Mhz);
(2)XT2CLK,可选高频振荡器,外接标准高速晶振,通常是接8Mhz,也可以接(400kHz~16Mhz);
(3)DCOCLK,数控振荡器,为内部晶振,由RC震荡回路构成;
(4)VLOCLK,内部低频振荡器,12kHz标准振荡器。
2、在MSP430单片机内部一共有三个时钟系统:
(1)ACLK,Auxiliary Clock,辅助时钟,通常由LFXT1CLK或VLOCLK作为时钟源,可以通过软件控制更改时钟的分频系数;
(2)MCLK,Master Clock,系统主时钟单元,为系统内核提供时钟,它可以通过软件从四个时钟源选择;
(3)SMCLK,Sub-Main Clock,系统子时钟,也是可以由软件选择时钟源。
Basic Clock Module Registers(基础时钟寄存器)
DCO control register DCOCTL
Basic clock system control 1 BCSCTL1
Basic clock system control 2 BCSCTL2
Basic clock system control 3 BCSCTL3
SFR interrupt enable register 1 IE1
SFR interrupt flag register 1 IFG1
3、MSP430的时钟设置包括3个寄存器,DCOCTL、BCSCTL1、BCSCTL2、BCSCTL3
DCOCTL,DCO控制寄存器,地址为56H,初始值为60H
DCO2 | DCO1 | DCO0 | MOD4 | MOD3 | MOD2 | MOD1 | MOD0 |
DCO0~DCO2: DCO Select Bit,定义了8种频率之一,而频率由注入直流发生器的电流定义。
MOD0~MOD4: Modulation Bit,频率的微调。
一般不需要DCO的场合保持默认初始值就行了。
BCSCTL1,Basic Clock System Control 1,地址为57H,初始值为84H
XT2OFF | XTS | DIVA1 | DIVA0 | XT5V | RSEL2 | RSEL1 | RSEL0 |
RSEL0~RSEL2: 选择某个内部电阻以决定标称频率.0最低,7最高。
XT5V: 1.
DIVA0~DIVA1:选择ACLK的分频系数。DIVA=0,1,2,3,ACLK的分频系数分别是1,2,4,8;
XTS: 选择LFXT1工作在低频晶体模式(XTS=0)还是高频晶体模式(XTS=1)。
XT2OFF: 控制XT2振荡器的开启(XT2OFF=0)与关闭(XT2OFF=1)。
正常情况下把XT2OFF复位就可以了.
BCSCTL2,Basic Clock System Control 2,地址为58H,初始值为00H
SEM1 | SELM0 | DIVM1 | DIVM0 | SELS | DIVS1 | DIVS0 | DCOR |
DCOR: Enable External Resistor. 0,选择内部电阻;1,选择外部电阻
DIVS0~DIVS1: DIVS=0,1,2,3对应SMCLK的分频因子为1,2,4,8
SELS: 选择SMCLK的时钟源, 0:DCOCLK; 1:XT2CLK/LFXTCLK.
DIVM0~1: 选择MCLK的分频因子, DIVM=0,1,2,3对应分频因子为1,2,4,8.
SELM0~1: 选择MCLK的时钟源, 0,1:DCOCLK, 2:XT2CLK, 3:LFXT1CLK
我用的时候一般都把SMCLK与MCLK的时钟源选择为XT2。
其它:
1. LFXT1: 一次有效的PUC信号将使OSCOFF复位,允许LFXT1工作,如果LFXT1信号没有用作SMCLK或MCLK,可软件置OSCOFF关闭LFXT1.
2. XT2: XT2产生XT2CLK时钟信号,如果XT2CLK信号没有用作时钟MCLK和SMCLK,可以通过置XT2OFF关闭XT2,PUC信号后置XT2OFF,即XT2的关闭的。
3. DCO振荡器:振荡器失效时,DCO振荡器会自动被选做MCLK的时钟源。如果DCO信号没有用作SMCLK和MCLK时钟信号时,可置SCG0位关闭DCO直流发生器。
4. 在PUC信号后,由DCOCLK作MCLK的时钟信号,根据需要可将MCLK的时钟源另外设置为LFXT1或XT2,设置顺序如下:
(1)清OSCOFF/XT2
(2)清OFIFG
(3)延时等待至少50uS
(4)再次检查OFIFG,如果仍置位,则重复(1)-(4)步,直到OFIFG=0为止。
(5)设置BCSCTL2的相应SELM。
实例分析
1、CPU运行在VLO时钟下:
这是最慢的时钟,在约12千赫兹下运行。因此,我们将通过可视化的LED闪烁的红色慢慢地在约每3秒钟率。我们可以让时钟系统默认这种状态,设置专门来操作VLO。我们将不使用任何ALCK外设时钟在此实验室工作,但你应该认识到,ACLK来自VLO时钟。
#include
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器
P1DIR = 0x40; // P1.6 配置输出
P1OUT = 0; // 关闭LED
BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
IFG1 &= ~OFIFG; // 清除OSCFault 标志
__bis_SR_register(SCG1 + SCG0); // 关闭 DCO
BCSCTL2 |= SELM_3 + DIVM_3; // MCLK = VLO/8
while(1)
{
P1OUT = 0x40; // 开启LED
_delay_cycles(100);
P1OUT = 0; // 关闭 LED
_delay_cycles(5000);
}
}
2、CPU运行在晶振(32768Hz)时钟下:
晶体频率为32768赫兹,约3倍的VLO。如果我们在前面的代码中使用晶振,指示灯应闪烁大约每秒一次。你知道为什么32768赫兹是一个标准?这是因为这个数字是2的15次方,因此很容易用简单的数字计数电路,以每秒一次获得率 ——手表和其他时间时基。认识到ACLK来自外部晶振时钟。
#include
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器
P1DIR = 0x41; // P1.0 和P1.6配置输出
P1OUT = 0x01; // 开启P1.0
BCSCTL3 |= LFXT1S_0; // LFXT1 = 32768Hz 晶振
while(IFG1 & OFIFG)
{
IFG1 &= ~OFIFG; // 清除 OSCFault 标志
_delay_cycles(100000); // 为可见的标志延时
}
P1OUT = 0; // 关闭P1
__bis_SR_register(SCG1 + SCG0); // 关闭 DCO
BCSCTL2 |= SELM_3 + DIVM_3; // MCLK = 32768/8
while(1)
{
P1OUT = 0x40; // 开启 LED
_delay_cycles(100);
P1OUT = 0; / / 关闭LED
_delay_cycles(5000);
}
}
3、CPU运行在晶振(32768Hz)和DCO时钟下:
最慢的频率,我们可以运行DCO约在1MHz(这也是默认速度)。因此,我们将开始切换MCLK到DCO下。在大多数系统中,你会希望ACLK上运行的VLO或32768赫兹晶振。由于ACLK在我们目前的代码是在晶体上运行,我们会打开DCO计算。
#include
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器
if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
{
while(1); // If cal const erased, 挂起
}
BCSCTL1 = CALBC1_1MHZ; // Set range
DCOCTL = CALDCO_1MHZ; //设置DCO模式
P1DIR = 0x41; // P1.0 和P1.6配置输出
P1OUT = 0x01; // P1.0 开启
BCSCTL3 |= LFXT1S_0; // LFXT1 = 32768Hz
while(IFG1 & OFIFG)
{
IFG1 &= ~OFIFG; // 清除OSCFault 标志
_delay_cycles(100000); // 为可见标志延时
}
P1OUT = 0; // P1.6 关闭
// __bis_SR_register(SCG1 + SCG0); // 关闭DCO
BCSCTL2 |= SELM_0 + DIVM_3; // MCLK = DCO
while(1)
{
P1OUT = 0x40; // P1.6 开启
_delay_cycles(100);
P1OUT = 0; / / P1.6 关闭
_delay_cycles(5000);
}
}
4、CPU运行在DCO时钟下:
最慢的频率,我们可以运行DCO约在1MHz(这也是默认速度)。因此,我们将开始切换MCLK到DCO下。在大多数系统中,你会希望在VLO或者是晶振下运行ACLK。由于ACLK在我们目前的代码是在VLO上运行,我们会打开DCO运行。
#include
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗定时器
if (CALBC1_1MHZ ==0xFF || CALDCO_1MHZ == 0xFF)
{
while(1); // If cal const erased,挂起
}
BCSCTL1 = CALBC1_1MHZ; // Set range
DCOCTL = CALDCO_1MHZ; // 设置DCO模式
P1DIR = 0x40; // P1.6 配置输出
P1OUT = 0; // P1关闭
BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
IFG1 &= ~OFIFG; // 清除 OSCFault 标志
//__bis_SR_register(SCG1 + SCG0); // 关闭DCO
BCSCTL2 |= SELM_0 + DIVM_3; // MCLK = DCO/8
while(1)
{
P1OUT = 0x40; // P1.6 关闭
_delay_cycles(100);
P1OUT = 0; // P1.6 开启
_delay_cycles(5000);
}
}
上一篇:Launchpad的温度测量及串口发送
下一篇:单片机中定时器与计数器的区别
推荐阅读最新更新时间:2024-03-16 15:28
设计资源 培训 开发板 精华推荐
- 希润医疗孟铭强:手功能软体机器人,让脑卒中患者重获新生
- 柔灵科技陈涵:将小型、柔性的脑机接口睡眠设备,做到千家万户
- 微灵医疗李骁健:脑机接口技术正在开启意识与AI融合的新纪元
- USB Type-C® 和 USB Power Delivery:专为扩展功率范围和电池供电型系统而设计
- 景昱医疗耿东:脑机接口DBS治疗技术已实现国产替代
- 首都医科大学王长明:针对癫痫的数字疗法已进入使用阶段
- 非常见问题解答第223期:如何在没有软启动方程的情况下测量和确定软启动时序?
- 兆易创新GD25/55全系列车规级SPI NOR Flash荣获ISO 26262 ASIL D功能安全认证证书
- 新型IsoVu™ 隔离电流探头:为电流测量带来全新维度
- 英飞凌推出简化电机控制开发的ModusToolbox™电机套件
- 看帖打卡赚现金:挑战21天学习freertos,打卡成长&赚外快
- 有奖直播报名:ADI 语音交互系统方案
- 有奖直播:Littelfuse电动车充电桩及车载充电器保护设计方案
- EEWORLD十周年为你而任性——上百块ST开发板团购盛宴开始啦!49元包邮,发帖还返现
- 免费申请|兆易创新GD32L233尝鲜体验,开启节能“芯”时代!
- 抢楼有礼:看直播,深入了解ST最新 MEMS气压计原理、操作、防水结构设计
- 注册泰克MDO示波器礼券 拿蓝牙耳机和纤细激光笔!
- ADI•世健工业嘉年华——电子书下载 活动开始啦
- ADI有奖下载活动之6 ADI基于IEC61850的智能电子设备(IED)系统解决方案
- [有奖转发]Vishay新能源、航天/军工解决方案