80C51存储器与C51内存优化

发布者:Blissful5最新更新时间:2017-01-19 来源: eefocus关键字:80C51  存储器  C51  内存优化 手机看文章 扫描二维码
随时随地手机看文章

80C51在物理结构上有四个存储空间:片内程序存储器、片外程序存储器、片内数据存储器和片外数据存储器。但在逻辑上,即从用户使用的角度上,80C51有三个存储空间:片内外统一编址的64KB的程序存储器地址空间(用16位地址)、256B的片内数据存储器的地址空间(用8位地址,其中128B的专用寄存器地址空间仅有21个字节有实际意义)以及64KB片外存储器地址空间。

1、程序存储器

程序存储器用于存放编好的程序和表格常数。80C51片内有4KB ROM,片外16位地址线最多可扩展64KB ROM,两者是统一编址的。如果EA端保持高电平,80C51的程序计数器PC在0000H——0FFFH范围内(即前4KB地址)是执行片内ROM的程序。当寻址范围在1000H——FFFFH时,则从片外存储器取指令。当EA端保持低电平时,80C51的所有取指令操作均在片外程序存储器中进行,这时片外存储器可以从0000H开始编址。

程序存储器中,以下6个单元具有特殊功能。

0000H:80C51复位后,PC=0000H,即程序从0000H开始执行指令。

0003H:外部中断0入口。

000BH:定时器0溢出中断入口。

0013H:外部中断1入口。

001BH:定时器1溢出中断入口。

0023H:串行口中断入口。

2、数据存储器

数据存储器用于存放中间运算结果、数据暂存和缓冲、标志位等。80C51片内有256B RAM,片外最多可扩充64KB RAM,构成了两个地址空间。

片内数据存储器为8位地址,最大可寻址256个单元,片内低128B(及00H~7FH)的地址区域为片内RAM,对其访问可采用直接寻址和间接寻址的方式。高128B地址区域(即80H~FFH)为专用寄存器区,只能采用直接寻址方式。

在低128B RAM区中,00H~1FH地址为通用工作寄存器区,共分为4组,每组由8个工作寄存器(R0~R7)组成,共占用32个单元。下表为工作寄存器的地址表。每组寄存器均可选作CPU当前的工作寄存器,通过对程序状态字PSW中RS1、RS0的设置来决定CPU当前使用哪一组。若程序中并不需要4组,那么其余的可用做一般的数据缓冲器。CPU在复位后,选中第0组工作寄存器。

 

RS1

RS0

R0

R1

R2

R3

R4

R5

R6

R7

0

0

0

00H

01H

02H

03H

04H

05H

06H

07H

1

0

1

08H

09H

0AH

0BH

0CH

0DH

0EH

0FH

2

1

0

10H

11H

12H

13H

14H

15H

16H

17H

3

1

1

18H

19H

1AH

1BH

1CH

1DH

1EH

1FH

 

工作寄存器区后的16B(即20H~2FH)可用位寻址方式访问其各个位,这128个位的位地址(位地址指的是某个二进制位的地址)为00H~7FH,它们可用做软件标志位或用于1位(布尔)处理。

3、专用寄存器SFR

80C51有21个专用寄存器SFR,亦称特殊功能寄存器。它们离散地分布在片内数据存储器的高128 B地址80H~FFH中,访问这些专用寄存器仅允许使用直接寻址的方式。专用寄存器并未占满80H~FFH整个地址空间,对空闲地址的操作是无意义的,若访问到空闲地址,则读出的是随机数。

在21个专用寄存器中有11个专用寄存器具有位寻址能力,它们的字节地址正好能被8整除。

注意:由于SFR是离散地分布在片内数据存储器的高128 B地址80H~FFH中,因此,当定义的数据长度大于128 B字节时,有可能会与某些SFR的地址冲突,导致意想不到的结果,所以,应当尽量把数据控制在128 B之内,特别是数组,如果数据量比较大,可以使用xdata,定义到外部ram中。

如:

unsigned char  xdata gTagId[2500*11] _at_ 0x0000;//定义数组gTagId,此数据存放在外部ram中,规定其起始地址为0x0000。

unsigned short xdata gTagIdNum;//定义数据gTagIdNum。

注意以下定义的区别:

unsigned char * xdata pWriteTagId;//定义指针,此指针存放在外部ram中,此指针指向的数据类型为unsigned char。

unsigned char xdata *pWriteTagId;//定义指针,此指针存放在内部ram中,此指针指向的数据存放在外部ram中,类型为unsigned char。

unsigned char xdata * xdata pWriteTagId;//定义指针,此指针存放在外部ram中,此指针指向的数据也存放在外部ram中,类型为unsigned char。

对于外部ram的使用,只要硬件把相应的引脚连接好之后,软件不需要进行任何设置,直接使用xdata进行访问即可。

 

 

关于对51单片机内存的认识

对 51 单片机内存的认识,很多人有误解,最常见的是以下两种

① 超过变量128后必须使用compact模式编译。

实际的情况是只要内存占用量不超过 256.0 就可以用 small 模式编译。

② 128以上的某些地址为特殊寄存器使用,不能给程序用。

与 PC 机不同,51 单片机不使用线性编址,特殊寄存器与 RAM 使用重复的地址,但访问时采用不同的指令,所以并不会占用 RAM 空间。

由于内存比较小,一般要进行内存优化,尽量提高内存的使用效率。

以 Keil C 编译器为例,small 模式下未指存储类型的变量默认为data型,即直接寻址,只能访问低128 个字节,但这 128 个字节也不是全为我们的程序所用,寄存器 R0-R7必须映射到低RAM,要占去8 个字节,如果使用寄存组切换,占用的更多。

所以可以使用 data 区最大为 120 字节,超出 120 个字节则必须用 idata 显式的指定为间接寻址,另外堆栈至少要占用一个字节,所以极限情况下可以定义的变量可占 247 个字节。当然,实际应用中堆栈为一个字节肯定是不够用的,但如果嵌套调用层数不深,有十几个字节也够有了。

 

为了验上面的观点,写了个例子(测试环境为 XP + Keil C 7.5)。

#define LEN 120
data unsigned char  tt1[LEN];
idata unsigned char tt2[127];

void main()
{
unsigned char  i, j;

for(i = 0;  i < LEN; ++i )
{
j = i;
tt1[j] = 0x55;
}
}

可以计算 R0-7(8) + tt1(120) + tt2(127) + SP(1) 总共 256 个字节

keil 编译的结果如下:
Program Size: data=256.0 xdata=0 code=30
creating hex file from "./Debug/Test"...
"./Debug/Test" - 0 Error(s), 0 Warning(s).

这段代码已经达到了内存分配的极限,再定义任何全局变量或将数组加大,编译都会报错 107,这里要引出一个问题:为什么变量 i、j 不计算在内?这是因为 i、j 是局部变量,编译器会试着将其优化到寄存器 Rx 或栈。问题也就在这了,如果局部变量过多或定义了局部数组,编译器无法将其优化,就必须使用 RAM 空间,虽然全局变量的分配经过精心计算没有超出使用范围,仍会产生内存溢出的错误!而编译器是否能成功的优化变量是根据代码来的。
上面的代码中,循环是臃肿的,变量 j 完全不必要,那么将代码改成

unsigned char i;
unsigned char j;

for(i = 0;  i < LEN; ++i )
{
tt1[i] = 0x55;
}

再编译看看,出错了吧!因为编译器不知道该如何使用 j,所以没能优化,j 须占 RAM 空间,RAM 就溢出了。(智能一点的编译器会自动将这个无用 的变量去掉,但这个不在讨论之列了)。

另外,对 idata 的定义的变量最好放在 data 变量之后。

对于这一种定义:

unsigned char c1;
idata unsigned char c2;
unsigned char c3;
变量 c2 肯定会以间接寻址,但它有可能落在 data 区域,就浪费了一个可直接寻址的空间。

 

变量优化一般要注意几点:

①让尽可能多的变量使用直接寻址,提高速度。
假如有两个单字节的变量和一个长119的字符型数组,因为总长超过 120 字节,不可能都定义在 data区。
按这条原则,定义的方式如下:

data unsigned char tab[119];
data unsigned char c1;
idata unsigned char c2;
但也不是绝的,如果 c1, c2 需要以极高的频率访问,而 tab 访问不那么频繁
则应该让访问量大的变量使用直接寻址:

data unsigned char c1;
data unsigned char c2;
idata UCHAR tab[119];
这个是要根据具体项目需求来确定的

 ②提高内存的重复利用率
就是尽可能的利用局部变量,局部变量还有个好处是访问速度比较快,由前面的例子可以看出,局部变量 i, j 是没有单独占用内存的,子程序中使用内存数目不大的变量尽量定义为局部变量。

 ③对于指针数组的定义,尽可能指明存储类型,尽量使用无符号类型变量,一般指针需要一个额外的字节指明存储类型,8051 系列本身不支持符号数,需要外加库来处理符号数,一是大大降低程序运行效率,二是需要额外的内存。

④避免出现内存空洞

可以通过查看编译器输出符号表文件(.M51)查看
对前面的代码,M51文件中关于内存一节如下:

* * * * * * *   D A T A   M E M O R Y   * * * * * * *
REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
DATA    0008H     0078H     UNIT                   ?DT?TEST
IDATA   0080H     007FH     UNIT                  ?ID?TEST
IDATA   00FFH     0001H     UNIT                  ?STACK

第一行显示寄存器组0从地址0000H开始,占用0008H个字节
第二行显示DATA区变量从0008H开 始,占用0078H个字节
第三行显示IDATA区变量从0080H开始,占用007F个字节
第四行显示堆栈从00FFH开始,占 0001H个字节

由于前面代码中变量定义比较简单,且连续用完了所有空间,所以这里显示比较简单,变量定义较多时,这里会有很多行,如果全局变量与局部变量分配不合理,就有可能出现类似下面的行:

0010H     0012H                  *** GAP ***
该行表示从0010H开始连续0012H个字节未充分利用或根本未用到,出现这种情况最常见的原因是局变量太多、多个子程序中的局部变量数目差异太大、使用了寄存器切换但未充分利用。


关键字:80C51  存储器  C51  内存优化 引用地址:80C51存储器与C51内存优化

上一篇:单片机学习笔记(四)——中断
下一篇:51单片机串口实验时波特率怎么调才合适

推荐阅读最新更新时间:2024-03-16 15:31

针对mac用户,西部数据推出6TB桌面存储器
    西部数据更新了其My Book Studio II型号外接硬盘产品,将其容量扩展到6TB。   这种硬盘驱动器被格式化成HFS+文件系统,主要面向Mac用户,例如用于OS X中的Time Machine特性,用户需要有OS X 10.5 Leopard以上系统才可以支持如此大容量的设备。   而如果想要用在PC上,则需要Vista以上的系统。不过这款6TB外接硬盘并不支持最新的Thunderbolt接口,但可以使用火线800和USB2.0,售价550美元。
[手机便携]
C51全局初始化及精确延时程序,51单片机精确延时程序
/********************************************************************************************************* * Initialization Program * QiZhao,2007 * All Rights Reserved * File : initial.h * By : QiZhao * Contact :zq1987731@163.com * * Version : V2.1 γ * Corrector : QiZhao * Date : 2008.2.1 (Last modified) * * Remarks :
[单片机]
带有存储器功能的数字温度计
1.DS1624基本原理 DS1624是美国DALLAS公司生产的集成了测量系统和存储器于一体的芯片。数字接口电路简单,与I2C总线兼容,且可以使用一片控制器控制多达8片的DS1624。其数字温度输出达13位,精度为0.03125℃。DS1624可工作在最低2.7V电压下,适用于低功耗应用系统。 (1).DS1624基本特性 .无需外围元件即可测量温度 .测量范围为-55℃~+125℃,精度为0.03125℃ .测量温度的结果以13位数字量(两字节传输)给出 .测量温度的典型转换时间为1秒 .集成了256字节的E2PROM非易性存储器 .数据的读出和写入通过一个2-线(I2C)串行接口完成 .采用
[测试测量]
带有<font color='red'>存储器</font>功能的数字温度计
80C51单片机的引脚功能基础详解
MCS-51是标准的40引脚双列直插式集成电路芯片,引脚排列请参见图 P0.0 ~ P0.7: P0口8位双向口线。 P1.0 ~ P1.7 :P1口8位双向口线。 P2.0 ~ P2.7 :P2口8位双向口线。 P3.0 ~ P3.7 :P3口8位双向口线。 ALE:地址锁存控制信号。在系统扩展时,ALE用于控制把P0口输出的低8位地址锁存起来,以实现低位地址和数据的隔离。此外,由于ALE是以晶振1/6的固定频率输出的正脉冲,因此,可作为外部时钟或外部定时脉冲使用。 PSEN:外部程序存储器读选通信号。在读外部ROM时,PSEN有效(低电平),以实现外部ROM单元的读操
[单片机]
<font color='red'>80C51</font>单片机的引脚功能基础详解
中国电子报:存储器版图将酿变
    无独有偶的事近期在存储器领域上演。Spansion公司除宣布整合富士通半导体MCU及相关业务外,还宣布与中国大陆300mm晶圆厂XMC共同签署一项技术许可协议。据该协议,XMC将获得Spansion浮栅NOR闪存技术授权。在XMC现有300mm晶圆产能基础上,双方将进一步扩大Spansion授权的65nm、45nm和32nm的MirrorBit闪存技术合作。而存储器另一大厂美光正式宣布整合尔必达以及旗下子公司瑞晶,在正式入主之后,不仅位居DRAM市场三强之列,未来其存储器产品及产能也将做进一步调整,存储器版图将酿变。   影响几何   XMC如果在32nm工艺实现突破,将在中国大陆半导体产业产生示范作用。   收购富士通半导
[手机便携]
C51单片机把只带的ADC(12bit)转换为RS232输出
#include reg51.h // STC8G1K08A-SOP8 #include intrins.h /* STC8G1K08A-SOP8 读取 VCC值 ,先发送出去 然后 循环开始 读取ch4的 (P55 ,第3脚)值 发送出去 */ sfr ADC_CONTR = 0xbc; sfr ADC_RES = 0xbd; sfr ADC_RESL = 0xbe; sfr ADCCFG = 0xde; sbit EADC = IE^5; sfr P3M1=0xb1; sfr P3M0=0xb2; sfr P5M1=0xc9; sfr P5M0=0x
[单片机]
TMS320C6678 存储器访问性能(下)
本文作者:德州仪器 冯华亮 1. DMA 访问存储器的性能 EDMA3 架构支持很多功能,可以实现高效的并行数据传输。本节讨论影响它性能的很多因素,如存储器类型,地址偏移等。 1.1 DMA 传输的额外开销 一般的传输时延被定义为EDMA 被触发到真正的数据传输开始的时间。由于数据传输开始的时间无法用简单的方法测量,所以我们用最小数据单元的传输完成时间来代表DMA 传输的时延或额外开销。根据不同源/目的地址的组合,这个值会有所不同。表4 列出了在1GHz C6678 EVM (64-bit 1333MTS DDR)上测得的从EDMA 触发(写ESR)最小数据传输(1 word)到EDMA 传输结束(读到IPR=1)
[嵌入式]
TMS320C6678 <font color='red'>存储器</font>访问性能(下)
增强型51系列单片机W77E58的存储器访问
     摘要: W77E58是Winbond公司推出的新一代增强型51系列单片机,文中介绍了W77E58对存储器访问的特点,并举例给出多种有关的应用程序实例。     关键词: 单片机  存储器  程序  W77E58     增强型51系列单片机W77E58可与标准的8052兼容,它内含4个8位I/O口、3个16位计数器和全双工串行通信接口。由于W77E58对处理器内核进行了重新设计,因而其性能较之于标准的8052有了很大提高。     W77E58改进了传统处理器的时序。机器周期与时钟之比可以由软件来控制,最快时一个机器周期仅需4个时钟,最慢时一个机器周期需1024个时钟。在同样的时钟频率下,当时钟
[缓冲存储]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved