1.DS1624基本原理
DS1624是美国DALLAS公司生产的集成了测量系统和存储器于一体的芯片。数字接口电路简单,与I2C总线兼容,且可以使用一片控制器控制多达8片的DS1624。其数字温度输出达13位,精度为0.03125℃。DS1624可工作在最低2.7V电压下,适用于低功耗应用系统。
(1).DS1624基本特性
⊕.无需外围元件即可测量温度
⊕.测量范围为-55℃~+125℃,精度为0.03125℃
⊕.测量温度的结果以13位数字量(两字节传输)给出
⊕.测量温度的典型转换时间为1秒
⊕.集成了256字节的E2PROM非易性存储器
⊕.数据的读出和写入通过一个2-线(I2C)串行接口完成
⊕.采用8脚DIP或SOIC封装,如图2.34.1
图2.34.1
(2).引脚描述及功能方框图
其引脚描述如表1所示:
DS1624的功能结构图如图4.34.2所示:
图4.34.2
(3).DS1624工作原理
温度测量
图4.34.3是温度测量的原理结构图
图4.34.3 温度测量的原理结构图
DS1624在测量温度时使用了独有的在线温度测量技术。它通过在一个由对温度高度敏感的振荡器决定的计数周期内对温度低敏感的振荡器时钟脉冲的计数值的计算来测量温度。DS1624在计数器中预置了一个初值,它相当于-55℃。如果计数周期结束之前计数器达到0,已预置了此初值的温度寄存器中的数字就会增加,从而表明温度高于-55℃。
与此同时,计数器斜坡累加电路被重新预置一个值,然后计数器重新对时钟计数,直到计数值为0。
通过改变增加的每1℃内的计数器的计数,斜坡累加电路可以补偿振荡器的非线性误差,以提高精度,任意温度下计数器的值和每一斜坡累加电路的值对应的计数次数须为已知。
DS1624通过这些计算可以得到0.03125℃的精度,温度输出为13位,在发出读温度值请求后还会输出两位补偿值。表2给出了所测的温度和输出数据的关系。这些数据可通过2线制串行口连续输出,MSB在前,LSB在后。[page]
表2 温度与输出数据关系表
由于数据在总线上传输时MSB在前,所以DS1624读出的数据可以是一个字节(分辨率为1℃),也可以是两个字节,第二个字节包含的最低位为0.03125℃。
表2是13位温度寄存器中存储温度值的数据格式
高八位字节 低八位字节
存储器的读操作
在这种模式下,主器件可以从DS1624的EEPROM中读取数据。主器件在发送开始信号之后,主器件首先发送写控制字节1001A2A1A00,主器件接收到DS1624应答之后,发送访问存储器的指令(17H),收到DS1624的应答之后,接着发送字地址将被被写入到DS1624的地址指针。这时DS1624发送应答信号之后,主器件并没有发送停止信号,而是重新发送START开始信号,接着又发送读控制字节1001A2A1A01,主器件接收到DS1624应答之后,开始接收DS1624送出来的数据,主器件每接收完一个字节的数据之后,都要发送一个应答信号给DS1624,直到主器件发送一个非应答信号或停止条件来结束DS1624的数据发送过程。
DS1624的指令集
数据和控制信息的写入读出是以表5和表6所示的方式进行的。在写入信息时,主器件输出从器件(即DS1624)的地址,同时R/W位置0。接收到响应位后,总线上的主器件发出一个命令地址,DS1624接收此地址后,产生响应位,主器件就向它发送数据。如果要对它进行读操作,主器件除了发出命令地址外,还要产生一个重复的启动条件和命令字节,此时R/W位为1,读操作开始。下面对它们的命令进行说明。
访问存储器指令[17H]:该指令是对DS1624的EEPROM进行访问,发送该指令之后,下一个字节就是被访问存储器的字地址数据。
访问设置寄存器指令[ACH]:如果R/W位置0,将写入数据到设置寄存器。发出请求后,接下来的一个字节被写入。 如果R/W位置1,将读出存在寄存器中的值。
读温度值指令[AAH]:即读出最后一个测温结果。DS1624产生两个字节,即为寄存器内的结果。
开始测温指令[EEH]:此命令将开始一次温度的测量,不需再输入数据。在单次测量模式下,可在进行转换的同时使DS1624保持闲置状态。在连续模式下,将启动连续测温。
停止测温指令[22H]:该命令将停止温度的测量,不需再输入数据。此命令可用来停止连续测温模式。发出请求后,当前温度测量结束,然后DS1624保持闲置状态。直到下一个开始测温的请求发出才继续进行连续测量。
表5 主机对DS1624写操作通信格式
关键字:存储器功能 数字温度计 测量系统
引用地址:带有存储器功能的数字温度计
DS1624是美国DALLAS公司生产的集成了测量系统和存储器于一体的芯片。数字接口电路简单,与I2C总线兼容,且可以使用一片控制器控制多达8片的DS1624。其数字温度输出达13位,精度为0.03125℃。DS1624可工作在最低2.7V电压下,适用于低功耗应用系统。
(1).DS1624基本特性
⊕.无需外围元件即可测量温度
⊕.测量范围为-55℃~+125℃,精度为0.03125℃
⊕.测量温度的结果以13位数字量(两字节传输)给出
⊕.测量温度的典型转换时间为1秒
⊕.集成了256字节的E2PROM非易性存储器
⊕.数据的读出和写入通过一个2-线(I2C)串行接口完成
⊕.采用8脚DIP或SOIC封装,如图2.34.1
图2.34.1
(2).引脚描述及功能方框图
其引脚描述如表1所示:
DS1624的功能结构图如图4.34.2所示:
图4.34.2
(3).DS1624工作原理
温度测量
图4.34.3是温度测量的原理结构图
图4.34.3 温度测量的原理结构图
DS1624在测量温度时使用了独有的在线温度测量技术。它通过在一个由对温度高度敏感的振荡器决定的计数周期内对温度低敏感的振荡器时钟脉冲的计数值的计算来测量温度。DS1624在计数器中预置了一个初值,它相当于-55℃。如果计数周期结束之前计数器达到0,已预置了此初值的温度寄存器中的数字就会增加,从而表明温度高于-55℃。
与此同时,计数器斜坡累加电路被重新预置一个值,然后计数器重新对时钟计数,直到计数值为0。
通过改变增加的每1℃内的计数器的计数,斜坡累加电路可以补偿振荡器的非线性误差,以提高精度,任意温度下计数器的值和每一斜坡累加电路的值对应的计数次数须为已知。
DS1624通过这些计算可以得到0.03125℃的精度,温度输出为13位,在发出读温度值请求后还会输出两位补偿值。表2给出了所测的温度和输出数据的关系。这些数据可通过2线制串行口连续输出,MSB在前,LSB在后。[page]
表2 温度与输出数据关系表
温度 |
数字量输出(二进制) |
数字量输出(十六进制) |
+125℃ |
0111,1101,0000,0000 |
7D00H |
+25.0625℃ |
0001,1001,0001,0000 |
1910H |
+0.5℃ |
0000,0000,1000,0000 |
0080H |
+0℃ |
0000,0000,0000,0000 |
0000H |
-0.5℃ |
1111,1111,1000,0000 |
FF80H |
-25.0625℃ |
1110,0110,1111,0000 |
E6F0H |
-55℃ |
1100,1001,0000,0000 |
C900H |
由于数据在总线上传输时MSB在前,所以DS1624读出的数据可以是一个字节(分辨率为1℃),也可以是两个字节,第二个字节包含的最低位为0.03125℃。
表2是13位温度寄存器中存储温度值的数据格式
高八位字节 低八位字节
S |
B14 |
B13 |
B12 |
B11 |
B10 |
B9 |
B8 |
B7 |
B6 |
B5 |
B4 |
B3 |
0 |
0 |
0 |
存储器的读操作
在这种模式下,主器件可以从DS1624的EEPROM中读取数据。主器件在发送开始信号之后,主器件首先发送写控制字节1001A2A1A00,主器件接收到DS1624应答之后,发送访问存储器的指令(17H),收到DS1624的应答之后,接着发送字地址将被被写入到DS1624的地址指针。这时DS1624发送应答信号之后,主器件并没有发送停止信号,而是重新发送START开始信号,接着又发送读控制字节1001A2A1A01,主器件接收到DS1624应答之后,开始接收DS1624送出来的数据,主器件每接收完一个字节的数据之后,都要发送一个应答信号给DS1624,直到主器件发送一个非应答信号或停止条件来结束DS1624的数据发送过程。
DS1624的指令集
数据和控制信息的写入读出是以表5和表6所示的方式进行的。在写入信息时,主器件输出从器件(即DS1624)的地址,同时R/W位置0。接收到响应位后,总线上的主器件发出一个命令地址,DS1624接收此地址后,产生响应位,主器件就向它发送数据。如果要对它进行读操作,主器件除了发出命令地址外,还要产生一个重复的启动条件和命令字节,此时R/W位为1,读操作开始。下面对它们的命令进行说明。
访问存储器指令[17H]:该指令是对DS1624的EEPROM进行访问,发送该指令之后,下一个字节就是被访问存储器的字地址数据。
访问设置寄存器指令[ACH]:如果R/W位置0,将写入数据到设置寄存器。发出请求后,接下来的一个字节被写入。 如果R/W位置1,将读出存在寄存器中的值。
读温度值指令[AAH]:即读出最后一个测温结果。DS1624产生两个字节,即为寄存器内的结果。
开始测温指令[EEH]:此命令将开始一次温度的测量,不需再输入数据。在单次测量模式下,可在进行转换的同时使DS1624保持闲置状态。在连续模式下,将启动连续测温。
停止测温指令[22H]:该命令将停止温度的测量,不需再输入数据。此命令可用来停止连续测温模式。发出请求后,当前温度测量结束,然后DS1624保持闲置状态。直到下一个开始测温的请求发出才继续进行连续测量。
表5 主机对DS1624写操作通信格式
I2C通信开始 |
主器件发送控制字节(DS1624地址和写操作) |
DS1624应答 |
主器件发送访问DS1624的指令 |
DS1624应答 |
主器件发送的数据字节 |
DS1624应答 |
通信停止 |
上一篇:DS18B20数字温度计的使用
下一篇:仪表放大器设计和制作
推荐阅读最新更新时间:2024-03-30 22:53
基于单片机的轴类零件温度测量系统设计
一、 前言 零件在加工过程中由于受各种热的影响而产生变形, 从而导致原有的加工精度遭到破坏或直接引起加工误差。对于精密加工而言,热变形的影响尤为显著,由此而引起的加工误差约占总加工误差的40%以上。本文给出一种对轴类零件的温度进行较准确测量的系统组成,系统由单片机80C552为控制核心,简单可靠,精度高。同时能计算出在不同温度下轴的热变形量。 二、 传感器组成及接口电路 1.传感器组成 传感器采用Pt温度传感器,如图1所示。 图1 Pt温度传感器 这种传感器是由一个直径为30 微米的铂丝绕成的线圈被夹在两层聚酰亚胺箔片之间,通过两条镍带与外界连接,其厚度只有0.3mm厚,易用于曲
[单片机]
基于ARM的微波频率自动测量系统设计
1.引言 通常微波所指的是分米波、厘米波和毫米波。关于其频率范围,一种说法是: 300MHz ~ 300GHz(1MHz =106Hz,1GHz =109 )相应的自由空间中的波长约为1m~1mm. 微波技术的兴起和蓬勃发展,使得国内大多数高校都开设微波技术课程。但还存在以下问题:测量时,由手工逐点移动探头并记录各点读数,然后手工计算实验结果并绘图。测量项目单一、精度低、测量周期长,操作也较为繁琐。本文主要研究一种实用的基于Labview的速调管微波频率自动测量系统。 2.系统整体结构 系统的整体结构如图2-1所示。由下位机跟上位机构成。微处理器通过驱动电路来控制步进电机,带动谐振式频率计的套筒转动,处理器采样检波电流,传送到上位
[电源管理]
基于传感器的角度测量系统设计
在现代控制系统中,角度测量装置是非常关键的需要高精度的部件,其测量精度直接影响着整个系统的性能和精度。例如施工升降机上有角度测控机构来控制起降;火箭炮瞄准系统中都有大量的角度传感器,实时检测炮塔偏转角度,以便对火箭炮瞄准进行调整。目前已有的利用的加速度传感器实现高精度角度测量的研究,主要侧重于单轴的角度测量。本文将重点讨论利用双轴加速传感器ADXL202实现高精度角度测量的软硬件方法。 1 角度测量仪系统硬件方案设计 本角度测量仪采用STM32F107作为数据处理的核心芯片。这是一款低功耗、高速度的32位处理器,拥有Cortex-M3内核。角度测量模块使用的是高精度、低功耗的双轴加速度传感器ADXL202,能将加速度信号转换成数字方
[测试测量]
一种扩散硅压力式密度静态测量系统
摘要: 全面实现轻化工过程的自动控制,溶液的密度(或浓度)等成分的测量是一个关键问题。通过多个扩散硅压力式传感器,结合单片机系统,实现了溶液密度的静态测量,并取得了较好的实验测量效果。
关键词: 扩散硅压力传感器 密度 单片机
在制糖等轻化工程中,为了全面实现工艺过程及质量的自动控制,需要对溶液的密度、浓度等万分进行测量,而密度的在线测量与湿度、流量、压力及液位等非电量测量相比,较为落后。谐振式和奥我力式密度计工作原理复杂,价格昂贵,未能在工业过程中普及;压差式密度测量一般采用具有可动部件和测量精度不高的机械式压力传感器(或压力变送器) ,测量精度和响应速度不能满足工业过程测量需要。在1980
[应用]
基于DS18B20和AT89C2051设计的分布式温度测量系统
温度监控是工业生产中的一个重要环节,尤其在环境 恶劣和复杂的工业现场,温度监控起着不可替代的作用。但是由于目前许多温度监控系统所采用的温度传感器的输出是一个变化的模拟电压量,不能与计算机采集系统直 接接口,需要进行采集、处理与变换,才能送入基于计算机 的监控系统。这就使得对于多点分布式的温度测量带来 了不便。随着计算机、通信、网络控制等技术的发展,工业测控系统已成为许多工业企业中非常重要的组成部分。加之现场总线技术的日趋成熟及数字温度传感器的出现,使得现场总线技术和数字温度传感器更多的用于工业监控系统中来,从而使得工业监控系统的功能更加强大,监控的范围更加的广泛。同时提高温度的测量的精度也是重要的目标之一。 因此本文设计的系统
[单片机]
3通道热电偶温度测量系统,精度为0.25℃电路图
电路功能与优势 图1中的电路在功能上可提供高精度、多通道的热电偶测量解决方案。精确的热电偶测量要求采用精密元件组成信号链,该信号链应当能够放大微弱的热电偶电压、降低噪声、校正非线性度并提供精确的基准结补偿(通常称为冷结补偿)。本电路可解决热电偶温度测量的全部这些难题,并具有±0.25°C以上的精度。 图1中的电路显示将3个K型热电偶连接至AD7793 精密24位 Σ-Δ型模数转换器(ADC),以测量热电偶电压。由于热电偶是一种差分器件而不是绝对式温度测量器件,必须知道基准结温才能获得精确的绝对温度读数。这一过程被称为基准结补偿,通常称为冷结补偿。本电路中ADT7320 精密16位数字温度传感器用于冷结基准测量,并提供
[电源管理]
运动员起跑反应时无线测量系统的研究和实现
引言 反应时是指刺激施于有机体之后到明显的反应开始时所需要的时间,即刺激与反应之间的时间间隔。目前,我国对运动员反应能力的测定大多是通过简单的声光反应时测定仪,或是计算机模拟来实现。但是这些测试方法受外界环境和人的主观心理因素影响较大,不能准确客观地反映运动员在运动中的神经反应能力。 本文实现了一个测量运动员(听觉)神经-运动反应时的系统,以提高运动员听到发令枪后的起跑速度。该系统是通过声音传感器和加速度传感器检测运动员听到发令枪到起跑所需要的时间,即运动员的神经-运动反应时,再通过无线数据传输模块将数据传送到PC机进行显示,并可根据反应时记录进行处理和绘制成反应时曲线,能够直观地了解运动员反应时的变化及趋势。
图1系统结
[网络通信]
基于小波变换的视频应变测量系统设计与实现
引言 应变是材料测试中的重要参数,材料力学的一个重要研究领域是通过建立材料的应力-应变关系如图1,研究和预测材料的力学行为 ,所以应变的获取关系到是否能正确和有效地构建材料的本构方程。在实验力学中,应变并非直接测量,它是通过对材料绝对变形测量后再按照相应的应变定义计算得出。 实际中通常采用机械式引伸计夹持在工件上,对工件施加载荷的同时进行测量。对于刚性材料,应变一般可以使用传统的机械夹持式引伸计进行测量。然而,这类装置对诸如纤维、薄膜、泡沫等软塑性材料的工件就无法使用,因为它们的重量和夹持方法都会影响试验结果与断裂点。在实际情况下,需要测知超大应变范围直至断裂的材料性能,受行程限制,机械式引伸计需要在试件断裂前提下,对于一
[测试测量]