基于小波变换的视频应变测量系统设计与实现

发布者:CMOS最新更新时间:2014-12-16 来源: eccn关键字:小波变换  视频应变  测量系统 手机看文章 扫描二维码
随时随地手机看文章

引言

应变是材料测试中的重要参数,材料力学的一个重要研究领域是通过建立材料的应力-应变关系如图1,研究和预测材料的力学行为[1],所以应变的获取关系到是否能正确和有效地构建材料的本构方程。在实验力学中,应变并非直接测量,它是通过对材料绝对变形测量后再按照相应的应变定义计算得出。



实际中通常采用机械式引伸计夹持在工件上,对工件施加载荷的同时进行测量。对于刚性材料,应变一般可以使用传统的机械夹持式引伸计进行测量。然而,这类装置对诸如纤维、薄膜、泡沫等软塑性材料的工件就无法使用,因为它们的重量和夹持方法都会影响试验结果与断裂点。在实际情况下,需要测知超大应变范围直至断裂的材料性能,受行程限制,机械式引伸计需要在试件断裂前提下,对于一些特定环境条件下的工件,例如高温条件,机械引伸计使用也会受到限制。

为减少测量误差、提高测量的精度及提高实际的适用范围。在材料拉伸试验的背景下,设计并采用视频应变测量系统间接测量材料拉伸试验中实时变化的应变。该应变测量系统既要满足试验的测量精度,又要保证测量的实时性。文中在材料拉伸试验应变测量的精密边缘检测算[2,3]法进行了深入研究,在成熟的小波变换理论下,创新地将小波变换期望亚像素算法应用于视频应变测量系统设计中。

小波变换期望值亚像素定位法

小波分析是一种多分辨率分析[4],能在时域和频域突出信号的局部特征,现已广泛应用于去噪和边缘检测等图像处理领域。

小波变换边缘检测原理

一维小波函数表示如下:



图像函数f(x)在小波尺度a下的小波变换由卷积运算得到:



对于某些特殊的小波函数,小波变换的模极大值对应信号的突变点。设是一个平滑的函数,定义为的一阶导数:



记作,则在小波尺度a下的小波变换就为:



小波变换正比于被平滑的函数f(x)的一阶导数,则的极大值对应的是导数的极大值,它也正是在小波尺度a下,信号的局部突变点。因此,小波变换模极大值检测可应用于图像的边缘检测[5]。

小波变换期望值亚像素定位法原理

设一维理想边缘模型为:



其中,对实际的成像系统,由于CCD是积分器件,它的输出灰度值与其感光面上的光强分布相关。设G(x)表示成像系统点扩展函数,其通常可用高斯函数近似表示:



成像系统所获取的理想边缘无噪声图像为:



其中:x0为边缘图像的准确位置。

设wf1(a,x)表示,在小波尺度a下的小波变换系数,p(x)为大于给定阈值T的小波变换系数概率。推导经CCD成像(含实际噪声)后边缘图像的准确位置。



期望值即是理想边缘经成像系统所得实际图像边缘的准确位置。



对于离散信号,设是图像边缘信号的小波变换系数,为大于给定阈值T的概率,E是阶跃边缘位置x的期望值,则有:



由此得到的小波系数期望值E即为图像边缘的准确位置。

小波变换期望值亚像素定位法求解步骤

小波变换期望值亚像素边缘检测具体定位步骤如下:

1)选择一个小波尺度a,对给定的数据执行小波变换;

2)求出在小波尺度a下的小波变换系数的模极大值;

3)滤除由噪声产生的,小波变换系数中随小波尺度a的增加而减小的模极大值;

4)给定一阈值T,滤除由噪声与微小细节生成的模极大值;

5)在模极大值附近,寻找和模极大值同符号的小波系数区间,该区间内的小波变换系数由式(12)求期望,所得期望值即是图像边缘的亚像素位置。[page]

理论可证明,小波变换边缘检测定位法不存在原理误差,同时具有较强的抗噪性能。有关试验已表明,在对光源等环境条件没有特殊要求的情况下,其边缘定位检测的精度能够在0.02个像素以内[5],验证了理论的正确性。另外,小波变换期望值边缘检测亚像素定位法是建立在信号小波变换基础上的,而Mallat方法的提出,使得小波变换的速度大大提高[4],因此小波变换期望值边缘检测亚像素定位法,无论是在其精度、抗噪性能还是速度等方面,都已有比较优越的性能。

测量试验与结果

试验设备及系统软件设计

试验硬件:CCD——德国Basler A601f;镜头——Computar公司的H6Z0812镜头;图像处理卡——Matrox公司的Meteor-Ⅱ/1394卡;光源——自制的LED面光源。试验过程中采用材料试验机进行动态拉伸试验。所使用的材料试验机具体参数为:力测量精度在负荷传感器容量的0.4%~100%范围内,精度为示值的±0.5%;位移速度精度优于±0.5﹪(空载、检测距离大于20mm)。试验设备如图2所示:


在Windows XP操作系统下,利用Visual C++高级语言编制系统软件[6,7],实现算法操作,系统界面及显示结果如图3。

根据试验数据的精密度评定方法,在试验中,得到的测量值M由真值T与实验误差δ两部分组成,即M=T±δ。真值是未知的,一般采用多次测量求算术平均值作为其真值。



采集频率对系统算法实现的影响

视频应变测量系统应用于动态图像测量,因此需研究影响系统数据结果的时间因素,即分析不同采集频率对小波变换期望亚像素算法精度的影响。

试验条件:三角架放在试验机上,固定摄像机,距试件大约200mm附近,具体距离根据工件图像清晰程度调节,装置如图2所示,用引伸计作为标记。打开试验机,开始试验,动横梁向下移动,选定横梁移动速度约3mm/min,工件进入拉伸试验阶段,摄像机采集试验数据,进行分析计算。具体试验参数如下:试验机拉伸速度3mm/min;光照度726LUX;物距192mm;测量标距50mm;光圈5;焦距14。

1、采集频率15帧/秒

在图4为在相机采集的数据中,把帧数换算为时间,与试验机采集的时间相匹配作为横坐标,纵坐标为变形值,虚线是引伸计采集数据,实线是相机采集的数据。


当采集频率7.5帧/秒时,相机采集数据与引伸计采集数据的平均误差为:



2、采集频率15帧/秒

同上处理得出,当采集频率15帧/秒时,相机采集数据与引伸计采集数据的平均误差为:



3、采集频率为30帧/秒

采集频率30帧/秒时,相机采集数据与引伸计采集数据的平均误差为:



通过对视频应变测量系统数据结果在不同图像采集频率下的分析,可以得出在光照、物距、焦距等外界因素不变的条件下,随着相机采集频率(7.5帧/秒、15帧/秒、30帧/秒)的提高,数据误差会随着增大。但该系统在30帧/秒情况下,可以满足一定的误差要求,而不至于误差过大,使得测量结果不精确。



结语

本文所设计的基于小波变换视频应变测量系统,精度较高,且具有一定的实时性要求,能够满足实际的需要。随着电子技术、机械科学、光学和计算机科学技术的发展,应用于视频应变测量系统的精密边缘检测技术,将会有长远的发展。
关键字:小波变换  视频应变  测量系统 引用地址:基于小波变换的视频应变测量系统设计与实现

上一篇:运算放大器的简易测量
下一篇:UHF RFID系统测试的挑战

推荐阅读最新更新时间:2024-03-30 22:51

基于GPS、GSM及CAN总线的列车行程测量系统
  引言   随着铁路运输向高速度、高密度方向发展,安全工作将更加重要。一旦发生事故,不仅中断行车、打乱正常运行秩序,在经济上造成严重的损失,而且还会在社会上产生不良影响。为保证列车快速、安全、舒适、高效地在高速线上运行,对铁路列车进行及时的检修是非常重要的。列车检修周期主要以列车行驶的里程为参考,所以及时准确地记录列车的行驶里程是保证列车安全运行的关键。以往对列车各车厢行驶里程的记录是采用人工记录计算机存储的方式,有时由于工作人员的疏忽,就可能造成记录表丢失或漏记现象,这样就会使列车的实际行驶里程与记录的行驶里程不符,从而使列车不能得到及时地检修,为列车的安全运行造成了隐患。因此,研制一个能够自动记录列车行驶里程的网络系统是至
[单片机]
基于GPS、GSM及CAN总线的列车行程<font color='red'>测量系统</font>
基于VC的GPIB仪器远程测量系统实现方法
0 引言 随着数字化的智能化仪器的快速发展,工程上越来越希望将常用仪器设备与计算机连接起来组成一个由计算机控制的智能系统。而工程中常用的仪器设备种类繁多、功能各异、独立性强,一个系统往往需要多台不同类型的仪器协同工作。而基于通用接口总线GPIB则可以把各种可编程仪器与计算机紧密地联系起来,使电子测量由独立的、传统的单台仪器向大规模自动测试系统的方向发展。本文提出了一种在VC++6.0编程环境中利用SCPI对基于GPIB接口的仪器进行远程测量的实现方法。 1 GPIB接口总线 GPIB主要是为台式测量仪器(或装置)组成自动测量系统而设计的。GPIB仪器系统主要利用GPIB接口卡将若干GPIB仪器连接起来,每个设备(包括计算机
[测试测量]
基于VC的GPIB仪器远程<font color='red'>测量系统</font>实现方法
基于51单片机的电机转速测量系统的设计方案
0 引言 本方案所设计的基于霍尔元件的 脉冲发生器 要求成本低,构造简单,性能好。在电气控制系统中存在着较为恶劣的电磁环境,因此要求产品本身要具有较强的抗干扰能力。系统主要由AT89S52 单片机处理系统、电机、传感器检测单元、信号处理单元和显示系统等几个部分组成。 1 总体方案设计 对转速的测量实际上是对转子旋转引起的周期脉冲信号的频率进行测量。霍尔元件测速法是利用霍尔开关元件测转速的。 霍尔开关元件 内含稳压电路、霍尔电势发生器、放大器、施密特触发器和输出电路。输出电平与TTL 电平兼容,在电机转轴上装一个圆盘,圆盘上装若干对小磁钢,小磁钢越多,分辨率越高,霍尔开关固定在小磁钢附近,当电机转动时,每当一个小磁钢转过霍尔开关
[单片机]
基于51单片机的电机转速<font color='red'>测量系统</font>的设计方案
基于单片机的倾角测量系统设计
1.引言   海洋环境监测仪器是测量海洋水文要素的重要手段,其在水下的姿态直接影响到测量参数的精度。通过对仪器姿态的精确测量,可在一定倾角范围内对流速、流向等水文测量要素进行倾斜补偿。本文主要通过倾角传感器的选型、A/D转换及其测量控制电路的设计、与上位机的通讯等几部分,详细介绍了一种倾角测量系统的设计方案。已成功地在国家“十五”863计划“水下流浪潮综合测量技术”课题中得到应用。 2.倾角测量系统的硬件设计   图1是系统硬件组成的框图。如图所示,整个系统由SCA100T倾角传感器、一阶低通滤波器、ADS1211AD转换器、单片机、上位机等几部分组成。下面简单对硬件的各个组成部分进行介绍: 2.1单片机的选择
[单片机]
基于单片机的倾角<font color='red'>测量系统</font>设计
基于LabVIEW的海洋环境多物理场测量系统设计
一、引言 近些年来,随着人类对于海洋开发力度的增加,关于海洋方面的研究越来越广泛深入。相应地,海洋中各种环境物理场也成为了研究关注的焦点。因为对于海洋环境物理场的了解,意味着人们可以更加熟悉海洋,利用其环境物理场的变化规律,使我们在海洋地质勘测、地震预警、海洋捕捞、石油勘探等领域,更加的方便、有效。 而随着海洋物理场水下物理场测量测试需求的增加,传统的测试手段已经无法满足现在的测量需要,繁多的各物理场采集系统硬件设备测量灵活性差,系统的安全性和可靠性低的缺点,已严重限制了在需要多个环境物理场同时进行测量中的应用。因此,对于一个小型化、智能化、布放便捷的海洋环境物理场测量系统的研究开发已经成为必需。 二、硬件系统介绍: 1.系统
[测试测量]
基于LabVIEW的海洋环境多物理场<font color='red'>测量系统</font>设计
基于多传感器融合的车载三维测量系统时空配准,车载三维测量
0 引 言 城市三维空间信息的获取是“数字城市”的基本工程,它具有位置性、多维性和时序性等特点,是“数字城市”中融合其他各种信息、形成在空间和时间上连续分布的城市综合信息的基础,这就决定了所获取的城市三维空间信息应具有一定的位置精度、时间精度以及完整的空间坐标描述形式,而过去只依赖于某种特定传感器的三维信息相对于这些要求就具有很大的局限性。因此,当前城市三维空间信息的获取的趋势是由利用单个特定传感器获取单一数据信息,向利用多个传感器获取多方面数据信息发展,将多种类型的传感器进行优化配置信息互补,从而使得系统的精度得到很大提高。这就涉及到如何对多种传感器进行信息获取和信息融合的问题。 多传感器数据融合处理的前提条件是从每个传感器
[传感技术]
基于SOPC的扭振信号测量系统实现研究
  扭振(即扭转振动)广泛存在于各种回转轴系中,如内燃机曲轴、发电机、齿轮传动链等。就内燃机轴系而言,严重的扭振会导致动力装置的部件断裂,造成不可估计的财产损失和人员伤亡。因此对扭振的动态测量和监控一直为人们所重视。   目前按照对扭振信号的提取方式,扭振测量可以分为模拟式、数字式和软件式。数字式扭振监测应用较为广泛。这一类仪器测量精度较高,信号采集主要用单片机或单片机及CPLD。单片机采集信号速度低且系统实时性较差;用单片机结合CPLD实现,系统可扩展性不好,一旦硬件做成很难改动,另外可编程器件与单片机接口的速率匹配也是一个瓶颈问题。   SOPC(System On Programmble Chip)是Altera公司提出
[嵌入式]
基于LabWindows /CVI介质复介电常数的测量系统设计
  0 引 言   复介电常数是表征介质材料电磁特性最重要的参量之一,为使其付诸使用,必须准确地知道介质材料的复介电常数。本文介绍一套介质复介电常数测量系统软件,它主要依据矩形腔微扰法对介质介电常数进行测量。该方法是测量复介电常数的一种常用方法,其具有计算简便,所需样品少,精度高等优点。该测试系统采用基于 GPIB总线的虚拟仪器系统结构作为硬件平台,其特点是系统中集成了带有GPIB接口的实际测量仪器,能够保证系统具有很高的测量精度。软件开发平台则采用图形化软件LabWindows/CVI,其优点是集图形化编程和文本语言编程于一体,其界面友好,操作简便,可大大缩短系统的开发周期。   1 系统软件结构   该测试系统采用LabWin
[测试测量]
基于LabWindows /CVI介质复介电常数的<font color='red'>测量系统</font>设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved