对STM32的flash进行操作的一些要点

发布者:xrmilk最新更新时间:2017-10-31 来源: eefocus关键字:STM32  flash 手机看文章 扫描二维码
随时随地手机看文章

说到STM32的flash,我们的第一反应是用来装程序的,实际上,STM32的片内FLASH不仅用来装程序,还用来装芯片配置、芯片ID、自举程序等等。当然, FLASH还可以用来装数据。

FLASH分类  
     根据用途,STM32片内的FLASH分成两部分:主存储块、信息块。 主存储块用于存储程序,我们写的程序一般存储在这里。 信息块又分成两部分:系统存储器、选项字节。  系统存储器存储用于存放在系统存储器自举模式下的启动程序(BootLoader),当使用ISP方式加载程序时,就是由这个程序执行。这个区域由芯片厂写入BootLoader,然后锁死,用户是无法改变这个区域的。 选项字节存储芯片的配置信息及对主存储块的保护信息。   

FLASH的页面  
      STM32的FLASH主存储块按页组织,有的产品每页1KB,有的产品每页2KB。页面典型的用途就是用于按页擦除FLASH。从这点来看,页面有点像通用FLASH的扇区。

STM32产品的分类  
      STM32根据FLASH主存储块容量、页面的不同,系统存储器的不同,分为小容量、中容量、大容量、互联型,共四类产品。  
小容量产品主存储块1-32KB,     每页1KB。系统存储器2KB。 
中容量产品主存储块64-128KB,   每页1KB。系统存储器2KB。 
大容量产品主存储块256KB以上,  每页2KB。系统存储器2KB。 
互联型产品主存储块256KB以上,  每页2KB。系统存储器18KB。 
     对于具体一个产品属于哪类,可以查数据手册,或根据以下简单的规则进行区分:  
STM32F101xx、STM32F102xx 、STM32F103xx产品,根据其主存储块容量,一定是小容量、中容量、大容量产品中的一种,STM32F105xx、STM32F107xx是互联型产品。  
     互联型产品与其它三类的不同之处就是BootLoader的不同,小中大容量产品的BootLoader只有2KB,只能通过USART1进行ISP,而互联型产品的BootLoader有18KB,能通过USAT1、4、CAN等多种方式进行ISP。小空量产品、中容量产品的BootLoader与大容量产品相同。

关于ISP与IAP 
      ISP(In System Programming)在系统编程,是指直接在目标电路板上对芯片进行编程,一般需要一个自举程序(BootLoader)来执行。ISP也有叫ICP(In Circuit Programming)、在电路编程、在线编程。 IAP(In Application Programming)在应用中编程,是指最终产品出厂后,由最终用户在使用中对用户程序部分进行编程,实现在线升级。IAP要求将程序分成两部分:引导程序、用户程序。引导程序总是不变的。IAP也有叫在程序中编程。 ISP与IAP的区别在于,ISP一般是对芯片整片重新编程,用的是芯片厂的自举程序。而IAP只是更新程序的一部分,用的是电器厂开发的IAP引导程序。综合来看,ISP受到的限制更多,而IAP由于是自己开发的程序,更换程序的时候更容易操作。


FPEC 
     FPEC(FLASH Program/Erase controller 闪存编程/擦除控制器),STM32通过FPEC来擦除和编程FLASH。FPEC使用7个寄存器来操作闪存: 


FPEC键寄存器(FLASH_KEYR)          写入键值解锁。 
选项字节键寄存器(FLASH_OPTKEYR)   写入键值解锁选项字节操作。 
闪存控制寄存器(FLASH_CR)          选择并启动闪存操作。 
闪存状态寄存器(FLASH_SR)          查询闪存操作状态。 
闪存地址寄存器(FLASH_AR)          存储闪存操作地址。 
选项字节寄存器(FLASH_OBR)         选项字节中主要数据的映象。 
写保护寄存器(FLASH_WRPR)          选项字节中写保护字节的映象。


键值 
     为了增强安全性,进行某项操作时,须要向某个位置写入特定的数值,来验证是否为安全的操作,这些数值称为键值。STM32的FLASH共有三个键值: 
      RDPRT键 = 0x000000A5  用于解除读保护 
      KEY1    = 0x45670123  用于解除闪存锁 
      KEY2    = 0xCDEF89AB  用于解除闪存锁

闪存锁 
     在FLASH_CR中,有一个LOCK位,该位为1时,不能写FLASH_CR寄存器,从而也就不能擦除和编程FLASH,这称为闪存锁。 
当LOCK位为1时,闪存锁有效,只有向FLASH_KEYR依次写入KEY1、KEY2后,LOCK位才会被硬件清零,从而解除闪存锁。当LOCK位为1时,对
FLASH_KEYR的任何错误写操作(第一次不是KEY1,或第二次不是KEY2),都将会导致闪存锁的彻底锁死,一旦闪存锁彻底锁死,在下一次复位前,都无法解锁,只有复位后,闪存锁才恢复为一般锁住状态。 
复位后,LOCK位默认为1,闪存锁有效,此时,可以进行解锁。解锁后,可进行FLASH的擦除编程工作。任何时候,都可以通过对LOCK位置1来软件加锁,软件加锁与复位加锁是一样的,都可以解锁。  

主存储块的擦除 
     主存储块可以按页擦除,也可以整片擦除。 

页擦除 
     主存储块的任何一页都可以通过FPEC的页擦除功能擦除。 建议使用以下步骤进行页擦除: 
1.检查FLASH_SR寄存器的BSY位。以确认没有其他正在进行的闪存操作。必须等待BSY位为0,才能继续操作。 
2.设置FLASH_CR寄存器的PER位为1。选择页擦除操作。 
3.设置FLASH_AR寄存器为要擦除页所在地址,选择要擦除的页。FLASH_AR的值在哪一页范围内,就表示要擦除哪一页。 
4.设置FLASH_CR寄存器的STRT位为1,启动擦除操作。
5.等待FLASH_SR寄存器的BSY位变为0,表示操作完成。 
6.查询FLASH_SR寄存器的EOP位,EOP为1时,表示操作成功。   
7.读出被擦除的页并做验证。擦完后所有数据位都为1。 

整片擦除 
     整片擦除功能擦除整个主存储块,信息块不受此操作影响。 建议使用以下步骤进行整片擦除: 
1.检查FLASH_SR寄存器的BSY位,以确认没有其他正在进行的闪存操作。 
2.设置FLASH_CR寄存器的MER位为1。选择整片擦除操作。   
3.设置FLASH_CR寄存器的STRT位为1。启动整片擦除操作。   
4.等待FLASH_SR寄存器的BSY位变为0,表示操作完成。 
5.查询FLASH_SR寄存器的EOP位,EOP为1时,表示操作成功。   
6.读出所有页并做验证。擦完后所有数据位都为1。

主存储块的编程 
     对主存储块编程每次可以写入16位。当FLASH_CR寄存器的PG位为1时,在一个闪存地址写入一个半字(16位)将启动一次编程;写入任何非半字的数据,FPEC都会产生总线错误。在编程过程中(BSY位为1时),任何读写闪存的操作都会使CPU暂停,直到此次闪存编程结束。 建议使用如下步骤对主存储块进行编: 
1.检查FLASH_SR寄存器的BSY位,以确认没有其他正在进行的编程操作。  
2.设置FLASH_CR寄存器的PG位为1。选择编程操作。  
3.在指定的地址写入要编程的半字。直接用指针写。 
4.等待FLASH_SR寄存器的BSY位变为0,表示操作完成。 
5.查询FLASH_SR寄存器的EOP位,EOP为1时,表示操作成功。 
6.读出写入的地址并验证数据。

关于主存储块擦除编程操作的一些疑问
1. 为什么每次都要检查BSY位是否为0? 
     因为BSY位为1时,不能对任何FPEC寄存器执行写操作,所以必须要等BSY位为0时,才能执行闪存操作。 
2. 如果没有擦除就进行编程,会出现什么结果? 
      STM32在执行编程操作前,会先检查要编程的地址是否被擦除,如果没有,则不进行编程,并置FLASH_SR寄存器的PGERR位为1。唯一例外的是,当要编程的数据为0X0000时,即使未擦除,也会进行编程,因为0X0000即使擦除也可以正确编程。 
3. 为什么操作后要读出数据并验证? 
      STM32在某些特殊情况下(例如FPEC被锁住),可能根本就没有执行所要的操作,仅通过寄存器无法判断操作是否成功。所以,保险起见,操作后都要读出所有数据检查。 
4. 等待BSY位为1的时间以多少为合适? 
     请参考STM32固件库中的数据。 
5. FLASH编程手册上说进行闪存操作(擦除或编程)时,必须打开内部的RC振荡器(HSI),是不是一定要用HIS进行闪存的擦除及编程操作? 
     对于这点,我的理解是,进行闪存操作时,必须要保证HIS没有被关闭,但是操作时的系统仍然可以是HSE时钟。STM32复位后,HIS默认是开的,只要你不为了低功耗去主动关闭它,则用什么时钟都可以进行闪存操作的。我所编的程序也验证了这一点。 

选项字节 
     选项字节用于存储芯片使用者对芯片的配置信息。
目前,所有的STM32101xx、STM32102xx、STM32103xx、STM32105xx、STM32107xx产品,选项字节都是16字节。但是这16字节,每两个字节组成一个正反对,即,字节1是字节0的反码,字节3是字节2的反码,...,字节15是字节14的反码,所以,芯片使用者只要设置8个字节就行了,另外8个字节系统自动填充为反码。因此,有时候,也说STM32的选项字节是8个字节,但是占了16字节的空间。选项字节的8字节正码概述如下: 

RDP   字节0。读保护字节,存储对主存储块的读保护设置。 
USER  字节2。用户字节,配置看门狗、停机、待机。 
Data0  字节4。数据字节0,由芯片使用者自由使用。 
Data1  字节6。数据字节1,由芯片使用者自由使用。 
WRP0  字节8。写保护字节0,存储对主存储块的写保护设置。 
WRP1  字节10。写保护字节1,存储对主存储块的写保护设置。
WRP2  字节12。写保护字节2,存储对主存储块的写保护设置。 
WRP3  字节14。写保护字节3,存储对主存储块的写保护设置。 

选项字节写使能 
     在FLASH_CR中,有一个OPTWRE位,该位为0时,不允许进行选项字节操作(擦除、编程)。这称为选项字节写使能。只有该位为1时,才能进行选项字节操作。 该位不能软件置1,但可以软件清零。只有向FLASH_OPTKEYR依次写入KEY1和KEY2后,硬件会自动对该位置1,此时,才允许选项字节操作。这称为解锁(打开)选项字节写使能。该位为1后,可以由软件清零,关闭写使能。复位后,该位为0。错误操作不会永远关闭写使能,只要写入正确的键序列,则又可以打开写使能。写使能已打开时,再次打开,不会出错,并且依然是打开的。 很显然,进行选项字节操作前,先要解开闪存锁,然后打开选项字节写使能,之后,才能进行选项字节操作。 

选项字节擦除 
     建议使用如下步骤对选项字节进行擦除: 
1.检查FLASH_SR寄存器的BSY位,以确认没有其他正在进行的闪存操作。  
2.解锁FLASH_CR寄存器的OPTWRE位。即,打开写使能。 
3.设置FLASH_CR寄存器的OPTER位为1。选择选项字节擦除操作。  
4.设置FLASH_CR寄存器的STRT位为1。 
5.等待FLASH_SR寄存器的BSY位变为0,表示操作完成。 
6.查询FLASH_SR寄存器的EOP位,EOP为1时,表示操作成功。
7.读出选项字节并验证数据。 
由于选项字节只有16字节,因此,擦除时是整个选项字节都被擦除了。

选项字节编程 
     建议使用如下步骤对选项字节进行编程: 
1.检查FLASH_SR寄存器的BSY位,以确认没有其他正在进行的编程操作。  
2.解锁FLASH_CR寄存器的OPTWRE位。即,打开写使能。  
3.设置FLASH_CR寄存器的OPTPG位为1。选择编程操作。  
4.写入要编程的半字到指定的地址。启动编程操作。 
5.等待FLASH_SR寄存器的BSY位变为0,表示操作完成。 
6.查询FLASH_SR寄存器的EOP位,EOP为1时,表示操作成功。 
7.读出写入的选项字节并验证数据。 对选项字节编程时,FPEC使用半字中的低字节并自动地计算出高字节(高字节为低字节的反码),并开始编程操作,这将保证选项字节和它的反码始终是正确的。 

主存储块的保护 
     可以对主存储块中的数据进行读保护、写保护。 读保护用于保护数据不被非法读出。防止程序泄密。 
写保护用于保护数据不被非法改写,增强程序的健壮性。 

读保护 
     主存储块启动读保护后,简单的说具有以下特性: 
1.从主存储块启动的程序,可以对整个主存储块执行读操作,不允许对主存储块的前4KB进行擦除编程操作,可以对4KB之后的区域进行擦除编程操作。 
2.从SRAM启动的程序,不能对主存储块进行读、页擦除、编程操作,但可以进行主存储块整片擦除操作。 
3.使用调试接口不能访问主存储块。这些特性足以阻止主存储器数据的非法读出,又能保证程序的正常运行。 
只有当RDP选项字节的值为RDPRT键值时,读保护才被关闭,否则,读保护就是启动的。因此,擦除选项字节的操作,将启动主存储块的读保护。如果要关闭读保护,必须将RDP选项字节编程为RDPRT键值。并且,如果编程选项字节,使RDP由非键值变为键值(即由保护变为非保护)时,STM32将会先擦除整个主存储块,再编程RDP。芯片出厂时,RDP会事先写入RDPRT键值,关闭写保护功能。 

写保护 
      STM32主存储块可以分域进行写保护。如果试图对写保护的域进行擦除或编程操作,在闪存状态寄存器(FLASH_SR)中会返回一个写保护错误标志。STM32主存储块每个域4KB,WRP0-WRP3选项字节中的每一位对应一个域,位为0时,写保护有效。对于超过128KB的产品,WRP3.15保护了域31及之后的所有域。显然,擦除选项字节将导致解除主存储块的写保护。

选项字节与它的寄存器映象 
我们知道,FPEC有两个寄存器存储了选项字节的映象。那么,选项字节本体(在FLASH中)与映象(在寄存器中)究竟有什么区别呢? 
选项字节的本体只是个FLASH,它的作用只是掉电存储选项字节内容而以,真正起作用的是寄存器中的映象。即,一个配置是否有效,不是看本体,而是看映象。而映象是在复位后,用本体的值加载的,此后,除非复位,映象将不再改变。所以,更改本体的数据后,不会立即生效,只有复位加载到映象中后,才会生效。 有一点要注意的是,当更改本体的值,使主存储块读保护变为不保护时,会先擦除整片主存储块,然后再改变本体。这是唯一一个改变本体会引发的动作。但即使这样,读保护依然要等到复位后,加载到映象后,才会解除。 
  
关于FLASH编程手册中文版的几处错误(不一定是,但是与我的理解不符)
1.选项字节编程一节中: 
对FPEC解锁后,必须分别写入KEY1和KEY2(见2.3.1节)到FLASH_OPTKEYR寄存器,再设置FLASH_CR寄存器的OPTWRE位为’1’,此时可以对选项字节进行编程 
实际上,对FLASH_OPTKEYR写入KEY1和KEY2后,OPTWRE位会被硬件置1,而不是用软件写1。这一点在后面的寄存器描述中也可以得到验证。 2.对读保护的描述中: 
对读保护的数值对无法理解。正确的应该是,RDP为RDPRT键值时,解除读保护,为其它值时,读保护生效。



看了半天,原来只要几句就可以解决,当然是不考虑其他功能,只是简单的读写操作。
其中写操作如下:
     FLASH_Unlock();  //解锁FLASH编程擦除控制器
     FLASH_ClearFlag(FLASH_FLAG_BSY|FLASH_FLAG_EOP|FLASH_FLAG_PGERR|FLASH_FLAG_WRPRTERR);//清除标志位
     /*********************************************************************************
          //               FLASH_FLAG_BSY            FLASH忙标志位
          //               FLASH_FLAG_EOP            FLASH操作结束标志位
          //               FLASH_FLAG_PGERR            FLASH编写错误标志位
          //               FLASH_FLAG_WRPRTERR       FLASH页面写保护错误标净         
     **********************************************************************************/
     FLASH_ErasePage(FLASH_START_ADDR);     //擦除指定地址页
     FLASH_ProgramHalfWord(FLASH_START_ADDR+(addr+i)*2,dat); //从指定页的addr地址开始写
     FLASH_ClearFlag(FLASH_FLAG_BSY|FLASH_FLAG_EOP|FLASH_FLAG_PGERR|FLASH_FLAG_WRPRTERR);//清除标志位
     FLASH_Lock();    //锁定FLASH编程擦除控制器

从上面可以看出基本顺序是:解锁-》清除标志位(可以不要)-》擦除-》写半字-》清楚标志位(也可以不要)-》上锁。其中FLASH_START_ADDR是宏定义的0x8000000+2048*255,0x8000000是Flash的起始地址,2048是因为我用的是大容量芯片,根据上一笔记Flash地址可以看出芯片每页容量2K,即2048字节,255表示芯片的最后一页,这个根据不同芯片而定。之所以从后面页写起可以防止储存数据破坏用户程序。addr*2是因为每个数据占用2字节(半字),虽然写入的是1字节数据,但是编程是2字节为单位,也就是说一个字节的数据也会占用两个字节地址。


读操作如下:
    u16 value;
    value = *(u16*)(FLASH_START_ADDR+(addr*2));//从指定页的addr地址开始读


我在实际的项目中发现,在对flash进行写操作时要关闭所有中断,关于这一点是否是必须的,我没有去进一步了解和验证。


关键字:STM32  flash 引用地址:对STM32的flash进行操作的一些要点

上一篇:STM32的GPIO口使用
下一篇:stm32上的c语言可变参数 实现自己的printf

推荐阅读最新更新时间:2024-03-16 15:42

stm32的swd接口的烧写协议是否公开的呢?
需要用一台好的示波器来抓才能有足够的存储深度,保证你能够过滤掉那个该死的50clock。 按照Arm的手册,每次转换发送方都需要一个TNR---但是我观察JLINK的波形却没有那个该死的TNR。 手册中说异步SWD需要,同步不需要----或者相反,但是我没有找到关于同步异步的描述。 姑且不管他,反正目前忽略掉TNR就能够读到该死IDR。 另外JLINK的复位时序很奇怪,大致是 70clk High,0xe79e(注意,SWD是LSB First), 70clk High,0xedb6(这里很奇怪,找不到描述), 70clkHigh,16clk Low,0xa5, 注意这里按照协议应该是TNR位-但是没有实际观测到这个位, 0b10
[单片机]
STM32——关于printf重定向到串口的问题
简单地说:想在mdk 中用printf,需要同时重定义fputc函数和避免使用semihosting(半主机模式), 标准库函数的默认输出设备是显示器,要实现在串口或LCD输出,必须重定义标准库函数里调用的与输出设备相关的函数. 例如:printf输出到串口,需要将fputc里面的输出指向串口(重定向),方法如下: #ifdef __GNUC__ /* With GCC/RAISONANCE, small printf (option LD Linker- Libraries- Small printf set to 'Yes') calls __io_putchar() */ #define PU
[单片机]
STM32学习笔记-STM32堆栈区(一)
一个由C/C++编译的程序占用的内存分为以下几个部分: 栈区(stack):编译器自动分配释放,存放函数的参数值,局部变量的值等。操作方式类似于数据结构中的栈。 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表。 全局区(静态区)(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系统释放。 文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放 程序代码区—存放函数体的二进制代码 编译后,各个区存储内容举例说明如下:
[单片机]
stm32使用三片74HC595级联程序代码
/************************************************************************ Function: Read_74HC595 Description: 读取n片74HC595的输入数据 Calls: HC595_delay;GPIO_ResetBits;GPIO_SetBits; Data Accessed: 无 Data Updated: 无 Input: HC595x:用户使用的595端口,类型定义在74HC595.h中 ChipNum: 用户使用的595端口上连接的芯片个数 Outp
[单片机]
STM32学习笔记之电容触摸2
(4)在led.c文件中添加以下代码 (5)在tpad.c文件内添加以下代码 #include tpad.h #include delay.h /*************************************************** Name :TPAD_Get_Value Function :触摸按键值获取 Paramater :None Return :获取的充电时间 ***************************************************/ u16 TPAD_Get_Value() { //电容放电 GPIOA- CRL &= 0xFFF
[单片机]
<font color='red'>STM32</font>学习笔记之电容触摸2
STM32微控制器可连接移动平台子系统
中国,2014年7月1日 ——意法半导体最新推出的专用低压STM32微控制器微助力设计人员克服在为主处理器增加辅助芯片(companion chip)时所面临的挑战。新系列专用低压微控制器与主处理器的数字电源域(digital power domain)相同,例如1.8V电源,同时准许片上外设使用电压更高的电源,例如,3.3V,从而避免了常见的性能与电压之间的矛盾问题。 STM32F038/48/58/78和STM32F318/28/58/78低压辅助微控制器是设计人员提高模块划分灵活性的理想解决方案。当需要模拟电压动态范围很宽或直接连接USB设备时,单片整合1.8V数字电源域和独立模拟电源域具有特别强的优势。 § ST
[单片机]
<font color='red'>STM32</font>微控制器可连接移动平台子系统
stm32最简单的实现BootLoader
在成熟的产品中,通常都是采用BootLoader方式来升级产品的程序。也就是IAP升级。 在了解完基本的实现原理后,可以做到用上位机升级(一般的产品大多采用这种方式,显得非常专业 有专用的升级软件,其实背后原理就是BootLoader升级方式)。当然还有一些联网在线升级也是如此。 网上有非常多的文件有介绍过stm32 BootLoader的实现。但是讲的可能比较深入难以理解, 实现更是无从下手。今天这里注意介绍最简单实现的方式,关键代码只有几行,每错,真的就只有 几行。 主要实现芯片是stm32f103c8t6,rom是64K 我实现的基本思路: 我们需要为BootLoader程序和APP程序分配空间,因为BootLoader
[单片机]
STM32例程之USB HID双向数据传输
程序功能 将STM32的USB枚举为HID设备。 STM32使用3个端点,端点0用于枚举用,端点1和2用于数据的发送和接收。 端点长度为64,也就是单次最多可以传输64个字节数据。 STM32获取上位机下发的数据并将该数据通过USB原样返回,同时将数据打印输出。 上位机程序通过调用windows的API实现对HID设备的读写控制。 USB接口原理图: HID枚举成功: 程序效果图 图一 上位机程序运行图 图二 STM32串口打印输出 图三 Bus Hound抓取的数据 程序部分代码 STM32的报告描述符: const uint8_t CustomHID_ReportDescriptor = { 0
[单片机]
<font color='red'>STM32</font>例程之USB HID双向数据传输
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved