STM32启动文件原理分析

发布者:云淡雅致最新更新时间:2017-11-05 来源: eefocus关键字:STM32  启动文件 手机看文章 扫描二维码
随时随地手机看文章

当前的嵌入式应用程序开发过程里,并且C语言成为了绝大部分场合的最佳选择。如此一来main函数似乎成为了理所当然的起点——因为C程序往往从main函数开始执行。但一个经常会被忽略的问题是:微控制器(单片机)上电后,是如何寻找到并执行main函数的呢?很显然微控制器无法从硬件上定位main函数的入口地址,因为使用C语言作为开发语言后,变量/函数的地址便由编译器在编译时自行分配,这样一来main函数的入口地址在微控制器的内部存储空间中不再是绝对不变的。相信读者都可以回答这个问题,答案也许大同小异,但肯定都有个关键词,叫“启动文件”,用英文单词来描述是“Bootloader”。

无论性能高下,结构简繁,价格贵贱,每一种微控制器(处理器)都必须有启动文件,启动文件的作用便是负责执行微控制器从“复位”到“开始执行main函数”中间这段时间(称为启动过程)所必须进行的工作。最为常见的51,AVR或MSP430等微控制器当然也有对应启动文件,但开发环境往往自动完整地提供了这个启动文件,不需要开发人员再行干预启动过程,只需要从main函数开始进行应用程序的设计即可。

话题转到STM32微控制器,无论是keil
uvision4还是IAR EWARM开发环境,ST公司都提供了现成的直接可用的启动文件,程序开发人员可以直接引用启动文件后直接进行C应用程序的开发。这样能大大减小开发人员从其它微控制器平台跳转至STM32平台,也降低了适应STM32微控制器的难度(对于上一代ARM的当家花旦ARM9,启动文件往往是第一道难啃却又无法逾越的坎)。

相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:
1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;
2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;
3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;
而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。
有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。
程序清单一:
;文件“stm32f10x_vector.s”,其中注释为行号
DATA_IN_ExtSRAM EQU 0 ;1
Stack_Size EQU 0x00000400 ;2
AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3
Stack_Mem SPACE Stack_Size ;4
__initial_sp ;5
Heap_Size EQU 0x00000400 ;6
AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7
__heap_base ;8
Heap_Mem SPACE Heap_Size ;9
__heap_limit ;10
THUMB ;11
PRESERVE8 ;12
IMPORT NMIException ;13
IMPORT HardFaultException ;14
IMPORT MemManageException ;15
IMPORT BusFaultException ;16
IMPORT UsageFaultException ;17
IMPORT SVCHandler ;18
IMPORT DebugMonitor ;19
IMPORT PendSVC ;20
IMPORT SysTickHandler ;21
IMPORT WWDG_IRQHandler ;22
IMPORT PVD_IRQHandler ;23
IMPORT TAMPER_IRQHandler ;24
IMPORT RTC_IRQHandler ;25
IMPORT FLASH_IRQHandler ;26
IMPORT RCC_IRQHandler ;27
IMPORT EXTI0_IRQHandler ;28
IMPORT EXTI1_IRQHandler ;29
IMPORT EXTI2_IRQHandler ;30
IMPORT EXTI3_IRQHandler ;31
IMPORT EXTI4_IRQHandler ;32
IMPORT DMA1_Channel1_IRQHandler ;33
IMPORT DMA1_Channel2_IRQHandler ;34
IMPORT DMA1_Channel3_IRQHandler ;35
IMPORT DMA1_Channel4_IRQHandler ;36
IMPORT DMA1_Channel5_IRQHandler ;37
IMPORT DMA1_Channel6_IRQHandler ;38
IMPORT DMA1_Channel7_IRQHandler ;39
IMPORT ADC1_2_IRQHandler ;40
IMPORT USB_HP_CAN_TX_IRQHandler ;41
IMPORT USB_LP_CAN_RX0_IRQHandler ;42
IMPORT CAN_RX1_IRQHandler ;43
IMPORT CAN_SCE_IRQHandler ;44
IMPORT EXTI9_5_IRQHandler ;45
IMPORT TIM1_BRK_IRQHandler ;46
IMPORT TIM1_UP_IRQHandler ;47
IMPORT TIM1_TRG_COM_IRQHandler ;48
IMPORT TIM1_CC_IRQHandler ;49
IMPORT TIM2_IRQHandler ;50
IMPORT TIM3_IRQHandler ;51
IMPORT TIM4_IRQHandler ;52
IMPORT I2C1_EV_IRQHandler ;53
IMPORT I2C1_ER_IRQHandler ;54
IMPORT I2C2_EV_IRQHandler ;55
IMPORT I2C2_ER_IRQHandler ;56
IMPORT SPI1_IRQHandler ;57
IMPORT SPI2_IRQHandler ;58
IMPORT USART1_IRQHandler ;59
IMPORT USART2_IRQHandler ;60
IMPORT USART3_IRQHandler ;61
IMPORT EXTI15_10_IRQHandler ;62
IMPORT RTCAlarm_IRQHandler ;63
IMPORT USBWakeUp_IRQHandler ;64
IMPORT TIM8_BRK_IRQHandler ;65
IMPORT TIM8_UP_IRQHandler ;66
IMPORT TIM8_TRG_COM_IRQHandler ;67
IMPORT TIM8_CC_IRQHandler ;68
IMPORT ADC3_IRQHandler ;69
IMPORT FSMC_IRQHandler ;70
IMPORT SDIO_IRQHandler ;71
IMPORT TIM5_IRQHandler ;72
IMPORT SPI3_IRQHandler ;73
IMPORT UART4_IRQHandler ;74
IMPORT UART5_IRQHandler ;75
IMPORT TIM6_IRQHandler ;76
IMPORT TIM7_IRQHandler ;77
IMPORT DMA2_Channel1_IRQHandler ;78
IMPORT DMA2_Channel2_IRQHandler ;79
IMPORT DMA2_Channel3_IRQHandler ;80
IMPORT DMA2_Channel4_5_IRQHandler ;81
AREA RESET, DATA, READONLY ;82
EXPORT __Vectors ;83
__Vectors ;84
DCD __initial_sp ;85
DCD Reset_Handler ;86
DCD NMIException ;87
DCD HardFaultException ;88
DCD MemManageException ;89
DCD BusFaultException ;90
DCD UsageFaultException ;91
DCD 0 ;92
DCD 0 ;93
DCD 0 ;94
DCD 0 ;95
DCD SVCHandler ;96
DCD DebugMonitor ;97
DCD 0 ;98
DCD PendSVC ;99
DCD SysTickHandler ;100
DCD WWDG_IRQHandler ;101
DCD PVD_IRQHandler ;102
DCD TAMPER_IRQHandler ;103
DCD RTC_IRQHandler ;104
DCD FLASH_IRQHandler ;105
DCD RCC_IRQHandler ;106
DCD EXTI0_IRQHandler ;107
DCD EXTI1_IRQHandler ;108
DCD EXTI2_IRQHandler ;109
DCD EXTI3_IRQHandler ;110
DCD EXTI4_IRQHandler ;111
DCD DMA1_Channel1_IRQHandler ;112
DCD DMA1_Channel2_IRQHandler ;113
DCD DMA1_Channel3_IRQHandler ;114
DCD DMA1_Channel4_IRQHandler ;115
DCD DMA1_Channel5_IRQHandler ;116
DCD DMA1_Channel6_IRQHandler ;117
DCD DMA1_Channel7_IRQHandler ;118
DCD ADC1_2_IRQHandler ;119
DCD USB_HP_CAN_TX_IRQHandler ;120
DCD USB_LP_CAN_RX0_IRQHandler ;121
DCD CAN_RX1_IRQHandler ;122
DCD CAN_SCE_IRQHandler ;123
DCD EXTI9_5_IRQHandler ;124
DCD TIM1_BRK_IRQHandler ;125
DCD TIM1_UP_IRQHandler ;126
DCD TIM1_TRG_COM_IRQHandler ;127
DCD TIM1_CC_IRQHandler ;128
DCD TIM2_IRQHandler ;129
DCD TIM3_IRQHandler ;130
DCD TIM4_IRQHandler ;131
DCD I2C1_EV_IRQHandler ;132
DCD I2C1_ER_IRQHandler ;133
DCD I2C2_EV_IRQHandler ;134
DCD I2C2_ER_IRQHandler ;135
DCD SPI1_IRQHandler ;136
DCD SPI2_IRQHandler ;137
DCD USART1_IRQHandler ;138
DCD USART2_IRQHandler ;139
DCD USART3_IRQHandler ;140
DCD EXTI15_10_IRQHandler ;141
DCD RTCAlarm_IRQHandler ;142
DCD USBWakeUp_IRQHandler ;143
DCD TIM8_BRK_IRQHandler ;144
DCD TIM8_UP_IRQHandler ;145
DCD TIM8_TRG_COM_IRQHandler ;146
DCD TIM8_CC_IRQHandler ;147
DCD ADC3_IRQHandler ;148
DCD FSMC_IRQHandler ;149
DCD SDIO_IRQHandler ;150
DCD TIM5_IRQHandler ;151
DCD SPI3_IRQHandler ;152
DCD UART4_IRQHandler ;153
DCD UART5_IRQHandler ;154
DCD TIM6_IRQHandler ;155
DCD TIM7_IRQHandler ;156
DCD DMA2_Channel1_IRQHandler ;157
DCD DMA2_Channel2_IRQHandler ;158
DCD DMA2_Channel3_IRQHandler ;159
DCD DMA2_Channel4_5_IRQHandler ;160
AREA |.text|, CODE, READONLY ;161
Reset_Handler PROC ;162
EXPORT Reset_Handler ;163
IF DATA_IN_ExtSRAM == 1 ;164
LDR R0,= 0x00000114 ;165
LDR R1,= 0x40021014 ;166
STR R0,[R1] ;167
LDR R0,= 0x000001E0 ;168
LDR R1,= 0x40021018 ;169
STR R0,[R1] ;170
LDR R0,= 0x44BB44BB ;171
LDR R1,= 0x40011400 ;172
STR R0,[R1] ;173
LDR R0,= 0xBBBBBBBB ;174
LDR R1,= 0x40011404 ;175
STR R0,[R1] ;176
LDR R0,= 0xB44444BB ;177
LDR R1,= 0x40011800 ;178
STR R0,[R1] ;179
LDR R0,= 0xBBBBBBBB ;180
LDR R1,= 0x40011804 ;181
STR R0,[R1] ;182
LDR R0,= 0x44BBBBBB ;183
LDR R1,= 0x40011C00 ;184
STR R0,[R1] ;185
LDR R0,= 0xBBBB4444 ;186
LDR R1,= 0x40011C04 ;187
STR R0,[R1] ;188
LDR R0,= 0x44BBBBBB ;189
LDR R1,= 0x40012000 ;190
STR R0,[R1] ;191
LDR R0,= 0x44444B44 ;192
LDR R1,= 0x40012004 ;193
STR R0,[R1] ;194
LDR R0,= 0x00001011 ;195
LDR R1,= 0xA0000010 ;196
STR R0,[R1] ;197
LDR R0,= 0x00000200 ;198
LDR R1,= 0xA0000014 ;199
STR R0,[R1] ;200
ENDIF ;201
IMPORT __main ;202
LDR R0, =__main ;203
BX R0 ;204
ENDP ;205
ALIGN ;206
IF :DEF:__MICROLIB ;207
EXPORT __initial_sp ;208
EXPORT __heap_base ;209
EXPORT __heap_limit ;210
ELSE ;211
IMPORT __use_two_region_memory ;212
EXPORT __user_initial_stackheap ;213
__user_initial_stackheap ;214
LDR R0, = Heap_Mem ;215
LDR R1, = (Stack_Mem + Stack_Size) ;216
LDR R2, = (Heap_Mem + Heap_Size) ;217
LDR R3, = Stack_Mem ;218
BX LR ;219
ALIGN ;220
ENDIF ;221
END ;222
ENDIF ;223
END ;224
如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:
 第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:
#define DATA_IN_ExtSRAM 0
 第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:
#define Stack_Size 0x00000400
 第3行:伪指令AREA,表示
 第4行:开辟一段大小为Stack_Size的内存空间作为栈。
 第5行:标号__initial_sp,表示栈空间顶地址。
 第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。
 第7行:伪指令AREA,表示
 第8行:标号__heap_base,表示堆空间起始地址。
 第9行:开辟一段大小为Heap_Size的内存空间作为堆。
 第10行:标号__heap_limit,表示堆空间结束地址。
 第11行:告诉编译器使用THUMB指令集。
 第12行:告诉编译器以8字节对齐。
 第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。
 第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)
 第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。
 第84行:标号__Vectors,表示中断向量表入口地址。
 第85—160行:建立中断向量表。
 第161行:
 第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。
 第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。
 第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。
 第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。
 第202行:声明__main标号。
 第203—204行:跳转__main地址执行。
 第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。
 第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。
 第212行:定义全局标号__use_two_region_memory。
 第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。
 第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。
 第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。
 第224行:程序完毕。
以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:
1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READONLY”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。
2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。
3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。
4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开发源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。
至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转¬¬C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。


关键字:STM32  启动文件 引用地址:STM32启动文件原理分析

上一篇:stm32调试时候出现 Error: Flash Download failed - "
下一篇:STM32 IAP+APP应用

推荐阅读最新更新时间:2024-03-16 15:43

关于STM32串口的理解
总的来说,STM32单片机的串口还是很好理解的,编程也不算复杂。当然我更愿意希望其中断系统和51单片机一样的简单。 对于接收终端,就是RXNE了,这只在接收完成后才产生,在执行USART_ITConfig(USART1, USART_IT_RXNE, ENABLE)代码时不会进入ISR。但麻烦的就是发送有关的中断了:TXE或者TC,根据资料和测试的结果,TXE在复位后就是置1的,即在执行USART_ITConfig(USART1, USART_IT_TXE, ENABLE)后会立即产生中断请求。因此这造成一个麻烦的问题:如果没有真正的发送数据,TXE中断都会发生,而且没有休止,这将占用很大部分的C
[单片机]
STM32 中断学习Interrupt/Evens
1、NVIC的优先级概念 占先式优先级 (pre-emption priority): 高占先式优先级的中断事件会打断当前的主程序/中断程序运行— —抢断式优先响应,俗称中断嵌套。 副优先级(subpriority): 在占先式优先级相同的情况下,高副优先级的中断优先被响应; 在占先式优先级相同的情况下,如果有低副优先级中断正在执行, 高副优先级的中断要等待已被响应的低副优先级中断执行结束后才 能得到响应——非抢断式响应(不能嵌套)。 2、判断中断是否会被响应的依据 首先是占先式优先级,其次是副优先级; 占先式优先级决定是否会有中断嵌套; Reset、NMI、Hard Fault 优先级为负(高于普
[单片机]
STM32 IAP 设计实例 (二)
上一篇介绍了IAP的实现。这里开始介绍主机的一个设计实例。 目标功能:STM32做主机,硬件接口主要包括SD card, USB,CAN, LCD,按键。 主要功能: 1,通过USB链接到PC,将用于更新的APP程序的BIN文件,放入SD中。 2,STM32通过FATFS读写SD卡中的文件。 3,通过CAN接口发送数据给从机。 4,LCD和按键用于人机交互。 PC通过STM32 USB读取SD卡的部分功能直接使用使用了神州三号开发板中的例程。移植FATFS参考了网上的一些例子,比较乱。 view plain copy int main(void) { uint16_t Status
[单片机]
<font color='red'>STM32</font> IAP 设计实例 (二)
快速入门STM32的学习经验总结
一、前言 假如你会使用8051,会写C语言,那么STM32本身并不需要刻意地学习。 我们要考虑的是, 我可以快速用STM32实现什么?为什么使用STM32而不是8051? 是因为51的频率太低,无法满足计算需求? 是51的管脚太少,无法满足众多外设的IO? 是51的功耗太大,电池挺不住? 是51的功能太弱,而你要使用SPI、I2C、ADC、DMA? 是51的内存太小而你要存储的东西太多? 当你需要使用STM32某些功能,而51实现不了的时候, 那STM32自然不需要学习,你会直接去寻找STM32某方面的使用方法。 比如要用spi协议的网卡、要使用串口通信、要使用rtos等等... 快速上手的学习步骤 我们假定大家已经对STM32的
[单片机]
STM32 SPI笔记(基于寄存器)
1.说在前面:最近尝试操作VS1053音频模块 使用的数据传输方法使用SPI协议,打算学一下SPI的配置方式 2.SPI 2-1:SPI(Secial Periperal interface),作为四线的通信接口,有着MISO MOSI SCLK和CS MISO:主进从出 MOSI:主出从进 SCLK: 时间信号 CS:片选信号 2-2:CPHA和CPOL CPHA为时钟相位,可以配置为1/0,控制数据的采样方式,设置为0的时候,控制在时钟周期的第一个跳变沿进行数据采集,设置为1的时候在第二个跳变沿进行采集 CPOL为时钟极性,可以配置为1/0,控制空闲状态的时钟极性,设置为0的时候空闲状态为低
[单片机]
<font color='red'>STM32</font> SPI笔记(基于寄存器)
STM32的GPIO口能够承受多大电压? 哪些IO口能容忍5V?
STM32的部分IO口可以容忍5V,部分IO口只能是3.3V容忍。 到底哪些能够容忍,查看数据手册,引脚标注”FT 的是可以容忍5V的。 比如:STM32F103xCDE_DS_CH_V5.pdf 在我们光盘“8,STM32参考资料STM32中文数据手册 下面 STM32F4的IO电平兼容性问题,STM32F4的绝大部分IO口,都兼容5V, 至于到底哪些是兼容5V的,请看STM32F40x的数据手册(注意是数据手册,不是中文参考手册!!), 见 表:Table 6 STM32F40x pin and ball definitions,凡是有FT/FTf标志的,都是兼容5V电平 的IO口,可以直接接5V的外设 (注意
[单片机]
STM32的通用定时器的知识及其配置
通用定时器大致有3个需要配置 1.时基配置 TIM_TimeBaseStructInit 2.外设输出PWM配置 TIM_OCStructInit 一般用来输出PWM的 3.外设输入捕捉配置 TIM_ICStructInit 对于来自与外面的信号进行输入捕捉,可以捕捉电平变化。 内容较多,本文不在叙述
[单片机]
基于STM32中串口通信的实例分析
串口是串行接口(serial port)的简称,也称为串行通信接口或COM接口。串口通信是指采用串行通信协议(serial communication)在一条信号线上将数据一个比特一个比特地逐位进行传输的通信模式。串口按电气标准及协议来划分,包括RS-232-C、RS-422、RS485等。 在串行通信中,数据在1位宽的单条线路上进行传输,一个字节的数据要分为8次,由低位到高位按顺序一位一位的进行传送。串行通信的数据是逐位传输的,发送方发送的每一位都具有固定的时间间隔,这就要求接收方也要按照发送方同样的时间间隔来接收每一位。不仅如此,接收方还必须能够确定一个信息组的开始和结束。 常用的两种基本串行通信方式包括同步通信和异步通信
[单片机]
基于<font color='red'>STM32</font>中串口通信的实例分析
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved