单片机计算器程序设计

发布者:breakthrough3最新更新时间:2017-11-16 来源: eefocus关键字:单片机  计算器程序 手机看文章 扫描二维码
随时随地手机看文章

按键和液晶,可以组成我们最简易的计算器。下面我们来写一个简易整数计算器提供给大家学习。为了让程序不过于复杂,我们这个计算器不考虑连加,连减等连续计算,不考虑小数情况。加减乘除分别用上下左右来替代,回车表示等于,ESC 表示归0。程序共分为三部分,一部分是 1602 液晶显示,一部分是按键动作和扫描,一部分是主函数功能。

/***************************Lcd1602.c 文件程序源代码*****************************/
#include 
#define LCD1602_DB P0
sbit LCD1602_RS = P1^0;
sbit LCD1602_RW = P1^1;
sbit LCD1602_E = P1^5;

/* 等待液晶准备好 */
void LcdWaitReady(){
    unsigned char sta;
    LCD1602_DB = 0xFF;
    LCD1602_RS = 0;
    LCD1602_RW = 1;
    do {
        LCD1602_E = 1;
        sta = LCD1602_DB; //读取状态字
        LCD1602_E = 0;
    //bit7 等于 1 表示液晶正忙,重复检测直到其等于 0 为止
    }while (sta & 0x80);
}
/* 向 LCD1602 液晶写入一字节命令,cmd-待写入命令值 */
void LcdWriteCmd(unsigned char cmd){
    LcdWaitReady();
    LCD1602_RS = 0;
    LCD1602_RW = 0;
    LCD1602_DB = cmd;
    LCD1602_E = 1;
    LCD1602_E = 0;
}
/* 向 LCD1602 液晶写入一字节数据,dat-待写入数据值 */
void LcdWriteDat(unsigned char dat){
    LcdWaitReady();
    LCD1602_RS = 1;
    LCD1602_RW = 0;
    LCD1602_DB = dat;
    LCD1602_E = 1;
    LCD1602_E = 0;
}
/* 设置显示 RAM 起始地址,亦即光标位置,(x,y)-对应屏幕上的字符坐标 */
void LcdSetCursor(unsigned char x, unsigned char y){
    unsigned char addr;
    if (y == 0){ //由输入的屏幕坐标计算显示 RAM 的地址
        addr = 0x00 + x; //第一行字符地址从 0x00 起始
    }else{
        addr = 0x40 + x; //第二行字符地址从 0x40 起始
    }
    LcdWriteCmd(addr | 0x80); //设置 RAM 地址
}
/* 在液晶上显示字符串,(x,y)-对应屏幕上的起始坐标,str-字符串指针 */
void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str){
    LcdSetCursor(x, y); //设置起始地址
    while (*str != '\0'){ //连续写入字符串数据,直到检测到结束符
        LcdWriteDat(*str++);
    }
}
/* 区域清除,清除从(x,y)坐标起始的 len 个字符位 */
void LcdAreaClear(unsigned char x, unsigned char y, unsigned char len){
    LcdSetCursor(x, y); //设置起始地址
    while (len--){ //连续写入空格
        LcdWriteDat(' ');
    }
}
/* 整屏清除 */
void LcdFullClear(){
    LcdWriteCmd(0x01);
}
/* 初始化 1602 液晶 */
void InitLcd1602(){
    LcdWriteCmd(0x38); //16*2 显示,5*7 点阵,8 位数据接口
    LcdWriteCmd(0x0C); //显示器开,光标关闭
    LcdWriteCmd(0x06); //文字不动,地址自动+1
    LcdWriteCmd(0x01); //清屏
}

Lcd1602.c 文件中根据上层应用的需要增加了2个清屏函数:区域清屏——LcdAreaClear,整屏清屏——LcdFullClear。

/**************************keyboard.c 文件程序源代码*****************************/
#include 
sbit KEY_IN_1 = P2^4;
sbit KEY_IN_2 = P2^5;
sbit KEY_IN_3 = P2^6;
sbit KEY_IN_4 = P2^7;
sbit KEY_OUT_1 = P2^3;
sbit KEY_OUT_2 = P2^2;
sbit KEY_OUT_3 = P2^1;
sbit KEY_OUT_4 = P2^0;

unsigned char code KeyCodeMap[4][4] = { //矩阵按键编号到标准键盘键码的映射表
    { '1', '2', '3', 0x26 }, //数字键 1、数字键 2、数字键 3、向上键
    { '4', '5', '6', 0x25 }, //数字键 4、数字键 5、数字键 6、向左键
    { '7', '8', '9', 0x28 }, //数字键 7、数字键 8、数字键 9、向下键
    { '0', 0x1B, 0x0D, 0x27 } //数字键 0、ESC 键、 回车键、 向右键
};
unsigned char pdata KeySta[4][4] = { //全部矩阵按键的当前状态
    {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}
};

extern void KeyAction(unsigned char keycode);

/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */
void KeyDriver(){
    unsigned char i, j;
    static unsigned char pdata backup[4][4] = { //按键值备份,保存前一次的值
        {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}
    };

    for (i=0; i<4; i++){ //循环检测 4*4 的矩阵按键
        for (j=0; j<4; j++){
            if (backup[i][j] != KeySta[i][j]){ //检测按键动作
                if (backup[i][j] != 0){ //按键按下时执行动作
                    KeyAction(KeyCodeMap[i][j]); //调用按键动作函数
                }
                backup[i][j] = KeySta[i][j]; //刷新前一次的备份值
            }
        }
    }
}
/* 按键扫描函数,需在定时中断中调用,推荐调用间隔 1ms */
void KeyScan(){
    unsigned char i;
    static unsigned char keyout = 0; //矩阵按键扫描输出索引
    static unsigned char keybuf[4][4] = { //矩阵按键扫描缓冲区
        {0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},
        {0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}
    };

    //将一行的 4 个按键值移入缓冲区
    keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;
    keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;
    keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;
    keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4;
    //消抖后更新按键状态
    for (i=0; i<4; i++){ //每行 4 个按键,所以循环 4 次
        if ((keybuf[keyout][i] & 0x0F) == 0x00){
            //连续 4 次扫描值为 0,即 4*4ms 内都是按下状态时,可认为按键已稳定的按下
            KeySta[keyout][i] = 0;
        }else if ((keybuf[keyout][i] & 0x0F) == 0x0F){
            //连续 4 次扫描值为 1,即 4*4ms 内都是弹起状态时,可认为按键已稳定的弹起
            KeySta[keyout][i] = 1;
        }
    }

    //执行下一次的扫描输出
    keyout++; //输出索引递增
    keyout &= 0x03; //索引值加到 4 即归零
    switch (keyout){ //根据索引,释放当前输出引脚,拉低下次的输出引脚
        case 0: KEY_OUT_4 = 1; KEY_OUT_1 = 0; break;
        case 1: KEY_OUT_1 = 1; KEY_OUT_2 = 0; break;
        case 2: KEY_OUT_2 = 1; KEY_OUT_3 = 0; break;
        case 3: KEY_OUT_3 = 1; KEY_OUT_4 = 0; break;
        default: break;
    }
}

keyboard.c 是对之前已经用过多次的矩阵按键驱动的封装,具体到某个按键要执行的动作函数都放到上层的 main.c 中实现,在这个按键驱动文件中只负责调用上层实现的按键动作函数即可。

/*****************************main.c 文件程序源代码******************************/
#include 
unsigned char step = 0; //操作步骤
unsigned char oprt = 0; //运算类型
signed long num1 = 0; //操作数 1
signed long num2 = 0; //操作数 2
signed long result = 0; //运算结果
unsigned char T0RH = 0; //T0 重载值的高字节
unsigned char T0RL = 0; //T0 重载值的低字节

void ConfigTimer0(unsigned int ms);
extern void KeyScan();
extern void KeyDriver();
extern void InitLcd1602();
extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);
extern void LcdAreaClear(unsigned char x, unsigned char y, unsigned char len);
extern void LcdFullClear();

void main(){
    EA = 1; //开总中断
    ConfigTimer0(1); //配置 T0 定时 1ms
    InitLcd1602(); //初始化液晶
    LcdShowStr(15, 1, "0"); //初始显示一个数字 0
    while (1){
        KeyDriver(); //调用按键驱动
    }
}
/* 长整型数转换为字符串,str-字符串指针,dat-待转换数,返回值-字符串长度 */
unsigned char LongToString(unsigned char *str, signed long dat){
    signed char i = 0;
    unsigned char len = 0;
    unsigned char buf[12];

    if (dat < 0){ //如果为负数,首先取绝对值,并在指针上添加负号
        dat = -dat;
        *str++ = '-';
        len++;
    }

    do { //先转换为低位在前的十进制数组
        buf[i++] = dat % 10;
        dat /= 10;
    } while (dat > 0);
    len += i; //i 最后的值就是有效字符的个数
    while (i-- > 0){ //将数组值转换为 ASCII 码反向拷贝到接收指针上
        *str++ = buf[i] + '0';
    }
    *str = '\0'; //添加字符串结束符
    return len; //返回字符串长度
}
/* 显示运算符,显示位置 y,运算符类型 type */
void ShowOprt(unsigned char y, unsigned char type){
    switch (type){
        case 0: LcdShowStr(0, y, "+"); break; //0 代表+
        case 1: LcdShowStr(0, y, "-"); break; //1 代表-
        case 2: LcdShowStr(0, y, "*"); break; //2 代表*
        case 3: LcdShowStr(0, y, "/"); break; //3 代表/
        default: break;
    }
}
/* 计算器复位,清零变量值,清除屏幕显示 */
void Reset(){
    num1 = 0;
    num2 = 0;
    step = 0;
    LcdFullClear();
}
/* 数字键动作函数,n-按键输入的数值 */
void NumKeyAction(unsigned char n){
    unsigned char len;
    unsigned char str[12];

    if (step > 1){ //如计算已完成,则重新开始新的计算
        Reset();
    }
    if (step == 0){ //输入第一操作数
        num1 = num1*10 + n; //输入数值累加到原操作数上
        len = LongToString(str, num1); //新数值转换为字符串
        LcdShowStr(16-len, 1, str); //显示到液晶第二行上
    }else{ //输入第二操作数
        num2 = num2*10 + n; //输入数值累加到原操作数上
        len = LongToString(str, num2); //新数值转换为字符串
        LcdShowStr(16-len, 1, str); //显示到液晶第二行上
    }
}
/* 运算符按键动作函数,运算符类型 type */
void OprtKeyAction(unsigned char type){
    unsigned char len;
    unsigned char str[12];

    if (step == 0){ //第二操作数尚未输入时响应,即不支持连续操作
        len = LongToString(str, num1); //第一操作数转换为字符串
        LcdAreaClear(0, 0, 16-len); //清除第一行左边的字符位
        LcdShowStr(16-len, 0, str); //字符串靠右显示在第一行
        ShowOprt(1, type); //在第二行显示操作符
        LcdAreaClear(1, 1, 14); //清除第二行中间的字符位
        LcdShowStr(15, 1, "0"); //在第二行最右端显示 0
        oprt = type; //记录操作类型
        step = 1;
    }
}
/* 计算结果函数 */
void GetResult(){
    unsigned char len;
    unsigned char str[12];

    if (step == 1){ //第二操作数已输入时才执行计算
        step = 2;
        switch (oprt){ //根据运算符类型计算结果,未考虑溢出问题
            case 0: result = num1 + num2; break;
            case 1: result = num1 - num2; break;
            case 2: result = num1 * num2; break;
            case 3: result = num1 / num2; break;
            default: break;
        }
        len = LongToString(str, num2); //原第二操作数和运算符显示到第一行
        ShowOprt(0, oprt);
        LcdAreaClear(1, 0, 16-1-len);
        LcdShowStr(16-len, 0, str);
        len = LongToString(str, result); //计算结果和等号显示在第二行
        LcdShowStr(0, 1, "=");
        LcdAreaClear(1, 1, 16-1-len);
        LcdShowStr(16-len, 1, str);
    }
}
/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码 */
void KeyAction(unsigned char keycode){
    if ((keycode>='0') && (keycode<='9')){ //输入字符
        NumKeyAction(keycode - '0');
    }else if (keycode == 0x26){ //向上键,+
        OprtKeyAction(0);
    }else if (keycode == 0x28){ //向下键,-
        OprtKeyAction(1);
    }else if (keycode == 0x25){ //向左键,*
        OprtKeyAction(2);
    }else if (keycode == 0x27){ //向右键,÷
        OprtKeyAction(3);
    }else if (keycode == 0x0D){ //回车键,计算结果
        GetResult();
    }else if (keycode == 0x1B){ //Esc 键,清除
        Reset();
        LcdShowStr(15, 1, "0");
    }
}
/* 配置并启动 T0,ms-T0 定时时间 */
void ConfigTimer0(unsigned int ms){
    unsigned long tmp; //临时变量
    tmp = 11059200 / 12; //定时器计数频率
    tmp = (tmp * ms) / 1000; //计算所需的计数值
    tmp = 65536 - tmp; //计算定时器重载值
    tmp = tmp + 28; //补偿中断响应延时造成的误差
    T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节
    T0RL = (unsigned char)tmp;

    TMOD &= 0xF0; //清零 T0 的控制位
    TMOD |= 0x01; //配置 T0 为模式 1
    TH0 = T0RH; //加载 T0 重载值
    TL0 = T0RL;
    ET0 = 1; //使能 T0 中断
    TR0 = 1; //启动 T0
}
/* T0 中断服务函数,执行按键扫描 */
void InterruptTimer0() interrupt 1{
    TH0 = T0RH; //重新加载重载值
    TL0 = T0RL;
    KeyScan(); //按键扫描
}

main.c 文件实现所有应用层的操作函数,即计算器功能所需要信息显示、按键动作响应等,另外还包括主循环和定时中断的调度。

通过这样一个程序,大家一方面学习如何进行多个 .c 文件的编程,另外一个方面学会多个函数之间的灵活调用。可以把这个程序看成是一个简单的小项目,学习一下项目编程都是如何进行和布局的。不要把项目想象的太难,再复杂的项目也是这种简单程序的组合和扩展而已。


关键字:单片机  计算器程序 引用地址:单片机计算器程序设计

上一篇:1602 液晶整屏移动程序
下一篇:单片机串口通信原理和控制程序

推荐阅读最新更新时间:2024-03-16 15:45

51单片机控制步进电机正反转的程序
这是一款51单片机控制步进电机正反转的程序,同时还能实现调速。 #include ”reg51.h“ #include “intrins.h” #define uchar unsigned char #define uint unsigned int #define delayNOP(); {_nop_();_nop_();_nop_();_nop_();}; unsigned char code FFW ={0xfe,0xfc,0xfd,0xf9,0xfb,0xf3,0xf7,0xf6}; //?? unsigned char code REV ={0xf6,0xf7,0xf3,0xfb,0xf9,0xfd,0xfc,0xf
[单片机]
51单片机之AD模数转换(概念)
单片机是一个典型的数字系统,数字系统只能呢个对输入的数字信号进行处理,其输出信号也是数字的。但工业或者生活中的很多量都是模拟量,这些模拟量可以通过传感器变成与之对应的电压、电流等模拟量。为了实现数字系统对这些电模拟量的测量,运算和控制,就需要一个模拟量和数字量之间的相互转化的过程。 A/D和D/A的基本概念 A/D是模拟量到数字量的转换,依靠的是模数转换器(Analog to Digital Converter),简称ADC。D/A是数字量到模拟量的转换,依靠的是数模转换器(Digital to Analog Converter),简称DAC。它们的道理是完全一样的,只是转换方向不同,因此我们讲解过程主要以A/D为例来讲解。
[单片机]
内核之争升级,安全MCU成重要细分市场
   MCU早已是一个完全竞争性市场,市场的表现也是波澜不惊。而ARM核的战场如今也从Cortex-M3转移到Cortex-M4。在老将新兵相继加入ARM阵营之后,其他架构如x86、MIPS等亦在寻求新的成长空间。 Cortex-M4成为主战场 多厂家相继发布基于Cortex-M4内核的MCU,加剧市场竞争。 继飞思卡尔、NXP先行推出基于ARM Cortex-M4内核的MCU之后,ST、TI在最近也相继发布相应产品,加剧了32位MCU市场的竞争局势。 Cortex-M4处理器是由ARM专门开发的最新嵌入式处理器,用以满足需要有效且易于使用的控制和信号处理功能混合的数字信号控制市场,高效的信号处理功能与Cortex
[工业控制]
实例讲解PIC单片机之AD设置步骤
AD 转换 我们先看看 R1 和 R2,R2 是个可调电阻 如果我们将 R2 变大 RA0 这个管脚上的电压就越大。R2 变小 RA0 这个管脚上的电压就越小。那单片机是怎么知道电压变化的。这就需要 AD 转换。就是将模拟量转换成数字量。 PIC 单片机如何表示电压 PIC 用十位二进制位的数来表示电压,也就是数值 0~1023 来表示电压。那比如现在这个数值是 400 那这代表多少的电压?这就要根据参考电压来确定了。 比如我们设置正参考电压为 3.3V ,当输入的电压为 0 时,数值就为 0。当输入的电压为 3.3V 时,数值就是 1023. 那如果输入的电压是 1.2V 代表多少电压。 首先,先算出一个数值
[单片机]
实例讲解PIC<font color='red'>单片机</font>之AD设置步骤
串行D/A转换器与单片机的接口设计
1引言 MAX521是一种2线8路八位电压输出DAC(数模转换器)。MAX521有5路参考电压输入,前面的四路DAC(DAC0~DAC3)每路有一个独立的参考电压输入(REF0~REF3),允许独立地设置每路的电压范围;剩下的四路DAC(DAC4~DAC7)共享一路参考电压输入REF4。它具有串行接口和内置软件协议,允许最高转换频率达400kbps。MAX521的接口具有双缓冲输入结构,允许DAC的寄存器单独或者同时更新;它具有低能耗模式,可以使工作电流减少到4μA。MAX521以单一的+5V电源供电。 应用范围:最小模拟器件系统;数据偏移/采样调节;工业过程控制;自动检测设备。 MAX521有20脚DIP,24脚SO和24
[单片机]
串行D/A转换器与<font color='red'>单片机</font>的接口设计
AVR单片机汇编指令的小合集
目前在学AVR,主要还是以C为主,但是也希望能懂一些汇编的语句,就找了一些常用语句,一起记忆。 一、算术和逻辑指令 1、加法指令 不带进位位加法:ADD Rd,Rr 带进位位加法:ADC Rd,Rr 字加立即数:ADIW Rdl,K 增1指令:INCRd 2、减法指令 不带进位位减法:SUB Rd,Rr 减立即数(字节):SUBI Rd,K 带进位位减法SBC :Rd,Rr 带进位位减立即数(字节):SBCI Rd,K 减立即数(字):SBIW Rdl,K 减1指令:DECRd 3、取反码指令 COM Rd 4、取补码指令 NEG Rd 5、比较指令 寄存器比较:CP Rd,Rr 带进位比较:CPC Rd,Rr 与立即数(字节
[单片机]
基于单片机的通信转换器在远程测控系统中设计
      1 前 言        随着计算机网络和通信技术的飞速发展,远程测控技术在工业生产过程中得到了广泛的应用,各种测量参数的网络化传输、智能化处理和综合化应用已成为一种趋势。传统仪器仪表的信号传输方式已无法实现生产过程中多种参数的实时性、准确性和远距离传输的要求;笔者介绍一种基于单片机串行通信口的集散局域网系统,实现多种工业参数的远程测控。       2 系统构成及功能        远程测控系统结构如图2—1所示。系统主要功能如下:       (1)PT为独立的测量监测站点,由单片机构成,可实现一个或多个子站点的监测,通过并行I/O口连接监测点的测量、检测、显示、调节、执行等部件;具有数据转换、存储
[单片机]
适合单片机裸机的开源软件框架:Zorb
很多时候,做单片机项目,会因为性能和内存资源的限制,没办法运行一些“大型”的通用框架,这个时候,一些轻量级的软件框架有显得尤为重要了。 这里就给大家分享一款一款适合单片机裸机的开源软件框架:Zorb Zorb简介 Zorb Framework是一个基于面向对象的思想来搭建一个轻量级的嵌入式框架。 搭建Zorb Framework的目的是为在不能运行Linux的芯片上快速开发应用,不用反复造轮子。 Zorb Framework的初步设计功能有: 1、时间系统功能zf_time 2、环形缓冲区功能zf_buffer 3、列表功能zf_list 4、状态机功能zf_fsm 5、事件功能zf_event 6、定时器功能zf_time
[单片机]
适合<font color='red'>单片机</font>裸机的开源软件框架:Zorb
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved