STM32CAN过滤器的作用

发布者:柳絮轻风最新更新时间:2017-11-25 来源: eefocus关键字:STM32  CAN过滤器 手机看文章 扫描二维码
随时随地手机看文章

STM32普通型芯片的CAN有14组过滤器组(互联型有28组过滤器组),用以对接收到的帧进行过滤。每组过滤器包括了2个可配置的32位寄存器:CAN_FxR0和CAN_FxR1。对于过滤器组,可以将其配置成屏蔽位模式,这样CAN_FxR0中保存的就是标识符匹配值,CAN_FxR1中保存的是屏蔽码,即CAN_FxR1中如果某一位为1,则CAN_FxR0中相应的位必须与收到的帧的标志符中的相应位吻合才能通过过滤器;CAN_FxR1中为0的位表示CAN_FxR0中的相应位可不必与收到的帧进行匹配。过滤器组还可以被配置成标识符列表模式,此时CAN_FxR0和CAN_FxR1中的都是要匹配的标识符,收到的帧的标识符必须与其中的一个吻合才能通过过滤。

注意:CAN_FilterIdHigh是指高16位CAN_FilterIdLow是低16位应该将需要得到的帧的和过滤器的设置值左对齐起。

一般我们用的都是普通型的,所以在本文中可以说STM32有14组过滤器组。

根据配置,每1组过滤器组可以有1个,2个或4个过滤器。
这些过滤器相当于关卡,每当收到一条报文时,CAN要先将收到的报文从这些过滤器上"过"一下,能通过的报文是有效报文,收进FIFO,不能通过的是无效报文(不是发给"我"的报文),直接丢弃。
所有的过滤器是并联的,即一个报文只要通过了一个过滤器,就是算是有效的。

每组过滤器组有两种工作模式:标识符列表模式和标识符屏蔽位模式。
在标识符列表模式下,收到报文的标识符必须与过滤器的值完全相等才能通过。
在标识符屏蔽位模式下,可以指定标识符的哪些位为何值时就算通过。这其实就是限定了处于某一范围的标识符能够通过。
在一组过滤器中,整组的过滤器都使用同一种工作模式。

另外,每组过滤器中的过滤器宽度是可变的,可以是32位或16位。

按工作模式和宽度,一个过滤器组可以变成以下几中形式之一:
(1) 1个32位的屏蔽位模式的过滤器。
(2) 2个32位的列表模式的过滤器。
(3) 2个16位的屏蔽位模式的过滤器。
(4) 4个16位的列表模式的过滤器。

所有的过滤器是并联的,即一个报文只要通过了一个过滤器,就是算是有效的。

每组过滤器组有两个32位的寄存器用于存储过滤用的"标准值",分别是FxR1,FxR2。
在32位的屏蔽位模式下:
有1个过滤器。
FxR2用于指定需要关心哪些位,FxR1用于指定这些位的标准值。
在32位的列表模式下:
有两个过滤器。
FxR1指定过滤器0的标准值,收到报文的标识符只有跟FxR1完全相同时,才算通过。
FxR2指定过滤器1的标准值。
在16位的屏蔽位模式下:
有2个过滤器。
FxR1配置过滤器0,其中,[31-16]位指定要关心的位,[15-0]位指定这些位的标准值。
FxR2配置过滤器1,其中,[31-16]位指定要关心的位,[15-0]位指定这些位的标准值。
在16位的列表模式下:
有4个过滤器。
FxR1的[15-0]位配置过滤器0,FxR1的[31-16]位配置过滤器1。
FxR2的[15-0]位配置过滤器2,FxR2的[31-16]位配置过滤器3。

STM32的CAN有两个FIFO,分别是FIFO0和FIFO1。为了便于区分,下面FIFO0写作FIFO_0,FIFO1写作FIFO_1。
每组过滤器组必须关联且只能关联一个FIFO。复位默认都关联到FIFO_0。
所谓“关联”是指假如收到的报文从某个过滤器通过了,那么该报文会被存到该过滤器相连的FIFO。
从另一方面来说,每个FIFO都关联了一串的过滤器组,两个FIFO刚好瓜分了所有的过滤器组。

每当收到一个报文,CAN就将这个报文先与FIFO_0关联的过滤器比较,如果被匹配,就将此报文放入FIFO_0中。
如果不匹配,再将报文与FIFO_1关联的过滤器比较,如果被匹配,该报文就放入FIFO_1中。
如果还是不匹配,此报文就被丢弃。

每个FIFO的所有过滤器都是并联的,只要通过了其中任何一个过滤器,该报文就有效。
如果一个报文既符合FIFO_0的规定,又符合FIFO_1的规定,显然,根据操作顺序,它只会放到FIFO_0中。

每个FIFO中只有激活了的过滤器才起作用,换句话说,如果一个FIFO有20个过滤器,但是只激话了5个,那么比较报文时,只拿这5个过滤器作比较。
一般要用到某个过滤器时,在初始化阶段就直接将它激活。
需要注意的是,每个FIFO必须至少激活一个过滤器,它才有可能收到报文。如果一个过滤器都没有激活,那么是所有报文都报废的。
一般的,如果不想用复杂的过滤功能,FIFO可以只激活一组过滤器组,且将它设置成32位的屏蔽位模式,两个标准值寄存器(FxR1,FxR2)都设置成0。这样所有报文均能通过。(STM32提供的例程里就是这么做的!)

STM32 CAN中,另一个较难理解的就是过滤器编号。
过滤器编号用于加速CPU对收到报文的处理。
收到一个有效报文时, CAN会将收到的报文 以及它所通过的过滤器编号, 一起存入接收邮箱中。CPU在处理时,可以根据过滤器编号,快速的知道该报文的用途,从而作出相应处理。
不用过滤器编号其实也是可以的, 这时候CPU就要分析所收报文的标识符, 从而知道报文的用途。
由于标识符所含的信息较多,处理起来就慢一点了。

STM32使用以下规则对过滤器编号:
(1) FIFO_0和FIFO_1的过滤器分别独立编号,均从0开始按顺序编号。
(2) 所有关联同一个FIFO的过滤器,不管有没有被激活,均统一进行编号。
(3) 编号从0开始,按过滤器组的编号从小到大,按顺序排列。
(4) 在同一过滤器组内,按寄存器从小到大编号。FxR1配置的过滤器编号小,FxR2配置的过滤器编号大。
(5) 同一个寄存器内,按位序从小到大编号。[15-0]位配置的过滤器编号小,[31-16]位配置的过滤器编号大。
(6) 过滤器编号是弹性的。 当更改了设置时,每个过滤器的编号都会改变。
但是在设置不变的情况下,各个过滤器的编号是相对稳定的。

这样,每个过滤器在自己在FIFO中都有编号。
在FIFO_0中,编号从0 -- (M-1), 其中M为它的过滤器总数。
在FIFO_1中,编号从0 -- (N-1),,其中N为它的过滤器总数。

一个FIFO如果有很多的过滤器,,可能会有一条报文, 在几个过滤器上均能通过,这时候,,这条报文算是从哪儿过来的呢?
STM32在使用过滤器时,按以下顺序进行过滤:
(1) 位宽为32位的过滤器,优先级高于位宽为16位的过滤器。
(2) 对于位宽相同的过滤器,标识符列表模式的优先级高于屏蔽位模式。
(3) 位宽和模式都相同的过滤器,优先级由过滤器号决定,过滤器号小的优先级高。

按这样的顺序,报文能通过的第一个过滤器,就是该报文的过滤器编号,被存入接收邮箱中。


关键字:STM32  CAN过滤器 引用地址:STM32CAN过滤器的作用

上一篇:cortex-M3 异常-- SVC、PendSV介绍
下一篇:LPC1768之定时器TIMER0

推荐阅读最新更新时间:2024-03-16 15:46

STM32学习笔记之DMA使用
实验:控制串口一以DMA方式发送(TX)数据 一、初始化DMA 对STM32任何模块使用前都要对其初始化、首先就是初始化外设时钟,查看时钟 数可知DMA时钟由AHB得来。 初始化时钟:RCC- AHBENR|=1 0; 在读数据手册可知:直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的资源来做其他操作。 两个DMA控制器有12个通道(DMA1有7个通道,DMA2有5个通道),每个通道专门用来管理来自于一个或多个外设对存储器访问的请求。还有一个仲裁器来协调各个DMA请求的优先权。我们实
[单片机]
<font color='red'>STM32</font>学习笔记之DMA使用
STM32中DMA模块的使用
DMA(Direct Memory Access)常译为“存储器直接存取”。早在Intel的8086平台上就有了DMA应用了。 一个完整的微控制器通常由CPU、存储器和外设等组件构成。这些组件一般在结构和功能上都是独立的,而各个组件的协调和交互就由CPU完成。如此一来,CPU作为整个芯片的核心,其处理的工作量是很大的。如果CPU先从A外设拿到一个数据送给B外设使用,同时C外设又需要D外设提供一个数据。。。这样的数据搬运工作将使CPU的负荷显得相当繁重。 严格的说,搬运数据只是CPU的比较不重要的一种工作。CPU最重要的工作室进行数据运算,从加减乘除到一些高级的运算,包括浮点、积分、微分、FFT等。CPU还需要负责复杂的中断
[单片机]
<font color='red'>STM32</font>中DMA模块的使用
STM32 TIM重映射
复用功能 没有重映射 部分重映射 完全重映射 TIM3_CH1 PA6 PB4 PC6 CH2 PA7 PB5 PC7 CH3 PB0 PB0 PC8 CH4 PB1 PB1 PC9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
[单片机]
STM32 SysTick秒用
这里针对的是无操作系统的情况下的使用。之前一直想利用systick既实现记录系统运行时间又能够精确实现微秒延时的功能,如果将SysTick的定时器的定时中断时间设置为1us,这在有些情况下会导致死机的问题。这样的话就无法利用systick来实现us延时函数了。 利用SysTick实现1ms定时中断,us延时函数可以利用SysTick的寄存器来运算得到精确的延时函数,具体实现如下: 头文件: #ifndef __SYSTICK_H #define __SYSTICK_H #ifdef __cplusplus extern C { #endif /* Includes -----------------------
[单片机]
STM32中断优先级谁更高 主要根据两个方面来判断
一:综述 STM32 目前支持的中断共为 84 个(16 个内核+68 个外部), 16 级可编程中断优先级 的设置(仅使用中断优先级设置 8bit 中的高 4 位)和16个抢占优先级(因为抢占优先级最多可以有四位数)。 二:优先级判断 STM32(Cortex-M3)中有两个优先级的概念——抢占式优先级和响应优先级,有人把响应优先级称作‘亚优先级’或‘副优先级’,每个中断源都需要被指定这两种优先级。 具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套,或者说高抢占式优先级的中断可以嵌套低抢占式优先级的中断。 当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在
[单片机]
STM32的SysTick时钟源来自哪里
有位朋友在后台大概问了这样一个问题:STM32的SysTick时钟源是来自Cortex系统定时器吗? 引伸: 为什么STM32CubeMX中Cortex系统定时器可选择1分频(和8分频)? 1写在前面 看到这个问题,我在想,这位朋友可能没有认真看手册,同时也存在一个误区。 我顺便也搜索了一下,网上很多文章都说到:SysTick时钟源是来自Cortex系统定时器,就是那个有8分频的时钟 但是,我们实际应用中,SysTick时钟源真的是来自这个Cortex系统定时器吗? 2 SysTick时钟初始化代码 不管是使用标准外设库,还是HAL库,你初始化SysTick,都会调用内核中的SysTick_Co
[单片机]
<font color='red'>STM32</font>的SysTick时钟源来自哪里
stm32成长记之LED呼吸灯
拍的GIF太朦胧了,就不备份了。。。 呼吸灯的实现实则是通过PWM控制的LED的亮灭时间间隔,由于人眼视觉的暂缓效应,达到预期的效果。 那么呼吸灯的设计思路是怎么的呢? ①需要点灯--LED的配置和实现(GPIO_InitTypeDef结构体) ②时间的调用--定时器的配置(TIM_TimeBaseInitTypeDef结构体) ③时间间隔的控制--PWM的配置和实现(TIM_OCInitTypeDef结构体) 通俗的讲,就是理论上想让LED达到图a的亮灭的效果(LED灯由亮逐渐熄灭后在逐渐点亮),然而在MCU的识别到的高电平为2.2~2.9V以上,也就是说MCU电平变化只有两种情况,高电平(或1)低电平(
[单片机]
<font color='red'>stm32</font>成长记之LED呼吸灯
初涉STM32之浅谈时钟使能问题
作为一个STM32的菜鸟级人物,我刚开始接触STM32时,其实和当年开始学习51单片机的心理是一样的。茫然,谁说不是呢?但是,正常的学习途径无非就是看书,然后敲代码,最后烧程序,有问题就check,然后再继续烧,我都怀疑我快成了火头工。因为在我的印象中,只有这类职业才和“烧”有着密不可分的联系。即使当一名敬业又牛逼的火头工是我毕生的梦想。OK,不侃了。我希望,通过写日志把我作为一个菜鸟在学习STM32中的问题记录下来,同时以我为鉴,规避那些没有必要的破事。 1. 学习STM32要不要基础 原则上它应该是需要的,但是,我们也能发现很多人也是没有基础的。比如说,我们实验室的大师兄原来是管理专业,但是现在相当牛逼,软硬皆通。如果你和很多
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved