C51程序设计中的编程中的字节对齐问题

发布者:ularof不加糖最新更新时间:2018-01-03 来源: eefocus关键字:C51  程序设计中  编程  字节对齐 手机看文章 扫描二维码
随时随地手机看文章

一.什么是字节对齐,为什么要对齐?

    现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
    对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问 一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对 数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那 么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数 据。显然在读取效率上下降很多。

二.字节对齐对程序的影响:

    先让我们看几个例子吧(32bit,x86环境,gCC编译器):
设结构体如下定义:
struct A
{
    int a;
    char b;
    short c;
};
struct B
{
    char b;
    int a;
    short c;
};
现在已知32位机器上各种数据类型的长度如下:
char:1(有符号无符号同)    
short:2(有符号无符号同)    
int:4(有符号无符号同)    
long:4(有符号无符号同)    
float:4     double:8
那么上面两个结构大小如何呢?
结果是:
sizeof(strcut A)值为8
sizeof(struct B)的值却是12

结构体A中包含了4字节长度的int一个,1字节长度的char一个和2字节长度的short型数据一个,B也一样;按理说A,B大小应该都是7字节。
之所以出现上面的结果是因为编译器要对数据成员在空间上进行对齐。上面是按照编译器的默认设置进行对齐的结果,那么我们是不是可以改变编译器的这种默认对齐设置呢,当然可以.例如:
#pragma PACk (2) /*指定按2字节对齐*/
struct C
{
    char b;
    int a;
    short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct C)值是8。
修改对齐值为1:
#pragma pack (1) /*指定按1字节对齐*/
struct D
{
    char b;
    int a;
    short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
sizeof(struct D)值为7。
后面我们再讲解#pragma pack()的作用.

三.编译器是按照什么样的原则进行对齐的?

    先让我们看四个重要的基本概念:
1.数据类型自身的对齐值:
对于char型数据,其自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,单位字节。
2.结构体或者类的自身对齐值:其成员中自身对齐值最大的那个值。
3.指定对齐值:#pragma pack (value)时的指定对齐值value。
4.数据成员、结构体和类的有效对齐值:自身对齐值和指定对齐值中小的那个值。
有 了这些值,我们就可以很方便的来讨论具体数据结构的成员和其自身的对齐方式。有效对齐值N是最终用来决定数据存放地址方式的值,最重要。有效对齐N,就是 表示“对齐在N上”,也就是说该数据的"存放起始地址%N=0".而数据结构中的数据变量都是按定义的先后顺序来排放的。第一个数据变量的起始地址就是数 据结构的起始地址。结构体的成员变量要对齐排放,结构体本身也要根据自身的有效对齐值圆整(就是结构体成员变量占用总长度需要是对结构体有效对齐值的整数 倍,结合下面例子理解)。这样就不能理解上面的几个例子的值了。
例子分析:
分析例子B;
struct B
{
    char b;
    int a;
    short c;
};
假 设B从地址空间0x0000开始排放。该例子中没有定义指定对齐值,在笔者环境下,该值默认为4。第一个成员变量b的自身对齐值是1,比指定或者默认指定 对齐值4小,所以其有效对齐值为1,所以其存放地址0x0000符合0x0000%1=0.第二个成员变量a,其自身对齐值为4,所以有效对齐值也为4, 所以只能存放在起始地址为0x0004到0x0007这四个连续的字节空间中,复核0x0004%4=0,且紧靠第一个变量。第三个变量c,自身对齐值为 2,所以有效对齐值也是2,可以存放在0x0008到0x0009这两个字节空间中,符合0x0008%2=0。所以从0x0000到0x0009存放的 都是B内容。再看数据结构B的自身对齐值为其变量中最大对齐值(这里是b)所以就是4,所以结构体的有效对齐值也是4。根据结构体圆整的要求, 0x0009到0x0000=10字节,(10+2)%4=0。所以0x0000A到0x000B也为结构体B所占用。故B从0x0000到0x000B 共有12个字节,sizeof(struct B)=12;其实如果就这一个就来说它已将满足字节对齐了, 因为它的起始地址是0,因此肯定是对齐的,之所以在后面补充2个字节,是因为编译器为了实现结构数组的存取效率,试想如果我们定义了一个结构B的数组,那 么第一个结构起始地址是0没有问题,但是第二个结构呢?按照数组的定义,数组中所有元素都是紧挨着的,如果我们不把结构的大小补充为4的整数倍,那么下一 个结构的起始地址将是0x0000A,这显然不能满足结构的地址对齐了,因此我们要把结构补充成有效对齐大小的整数倍.其实诸如:对于char型数据,其 自身对齐值为1,对于short型为2,对于int,float,double类型,其自身对齐值为4,这些已有类型的自身对齐值也是基于数组考虑的,只 是因为这些类型的长度已知了,所以他们的自身对齐值也就已知了.
同理,分析上面例子C:
#pragma pack (2) /*指定按2字节对齐*/
struct C
{
    char b;
    int a;
    short c;
};
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
第 一个变量b的自身对齐值为1,指定对齐值为2,所以,其有效对齐值为1,假设C从0x0000开始,那么b存放在0x0000,符合0x0000%1= 0;第二个变量,自身对齐值为4,指定对齐值为2,所以有效对齐值为2,所以顺序存放在0x0002、0x0003、0x0004、0x0005四个连续 字节中,符合0x0002%2=0。第三个变量c的自身对齐值为2,所以有效对齐值为2,顺序存放
在0x0006、0x0007中,符合 0x0006%2=0。所以从0x0000到0x00007共八字节存放的是C的变量。又C的自身对齐值为4,所以C的有效对齐值为2。又8%2=0,C 只占用0x0000到0x0007的八个字节。所以sizeof(struct C)=8.

四.如何修改编译器的默认对齐值?

1.在VC IDE中,可以这样修改:[Project]|[Settings],c/c++选项卡Category的Code Generation选项的Struct Member Alignment中修改,默认是8字节。
2.在编码时,可以这样动态修改:#pragma pack .注意:是pragma而不是progma.

五.针对字节对齐,我们在编程中如何考虑?


    如果在编程的时候要考虑节约空间的话,那么我们只需要假定结构的首地址是0,然后各个变量按照上面的原则进行排列即可,基本的原则就是把结构中的变量按照 类型大小从小到大声明,尽量减少中间的填补空间.还有一种就是为了以空间换取时间的效率,我们显示的进行填补空间进行对齐,比如:有一种使用空间换时间做 法是显式的插入reserved成员:
         struct A{
           char a;
           char reserved[3];//使用空间换时间
           int b;
}

reserved成员对我们的程序没有什么意义,它只是起到填补空间以达到字节对齐的目的,当然即使不加这个成员通常编译器也会给我们自动填补对齐,我们自己加上它只是起到显式的提醒作用.

六.字节对齐可能带来的隐患:

    代码中关于对齐的隐患,很多是隐式的。比如在强制类型转换的时候。例如:
unsigned int i = 0x12345678;
unsigned char *p=NULL;
unsigned short *p1=NULL;

p=&i;
*p=0x00;
p1=(unsigned short *)(p+1);
*p1=0x0000;
最后两句代码,从奇数边界去访问unsignedshort型变量,显然不符合对齐的规定。
在x86上,类似的操作只会影响效率,但是在MIPS或者sparc上,可能就是一个error,因为它们要求必须字节对齐.

七.如何查找与字节对齐方面的问题:

如果出现对齐或者赋值问题首先查看
1. 编译器的big little端设置
2. 看这种体系本身是否支持非对齐访问
3. 如果支持看设置了对齐与否,如果没有则看访问时需要加某些特殊的修饰来标志其特殊访问操作。


关键字:C51  程序设计中  编程  字节对齐 引用地址:C51程序设计中的编程中的字节对齐问题

上一篇:C51在程序设计中的内存分配问题
下一篇:C51程序设计中的sizeof详细解析

推荐阅读最新更新时间:2024-03-16 15:51

C51延时程序再抛砖原创
看到了个好帖,我在此在它得基础上再抛抛砖! 有个好帖,从精度考虑,它得研究结果是: void delay2(unsigned char i) { while(-i); } 为最佳方法。 分析:假设外挂12M(之后都是在这基础上讨论) 我编译了下,传了些参数,并看了汇编代码,观察记录了下面的数据: delay2(0):延时518us 518-2*256=6 delay2(1):延时7us(原帖写 5us 是错的,^_^) delay2(10):延时25us 25-20=5 delay2(20):延时45us 45-40=5 delay2(100):延时205us 205-200=5 delay2(200):延时405us 405-40
[单片机]
51单片机心形灯——实现从左到右顺时针流水编程
心形灯原理图 编译软件:Keil uVision5 (如有需要可点此链接下载:https://download.csdn.net/download/qq_36931762/11343174) 单片机程序下载软件:STC-ISP (如有需要可点此链接下载:https://download.csdn.net/download/qq_36931762/11343157) 程序代码: #include reg51.h #include intrins.h unsigned char code table ={0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f}; unsigned
[单片机]
51单片机心形灯——实现从左到右顺时针流水<font color='red'>编程</font>
理解仪器编程术语
对电子测量仪器进行编程时,有很多术语,难以记忆,所以摘录和小结如下,供需要时参考。 1.VISA VISA(虚拟仪器软件体系结构) VISA标准由VXI即插即用基金会制订。驱动程序遵从VXI即插即用标准,它始终通过VISA库执行I/O。因此如果使用即插即用驱动程序,就需要VISA I/O 库。原打算用VISA标准为各种物理接口提供一套类似的功能调用。但实际上VISA库却倾向于专门的厂商接口。 2.VISA - COM VISA-COM库是 I/O 使用的COM接口,它作为VISA的伴同规范开发。VISA-COM I/O 提供 COM 基API 中的VISA 服务。VISA-CO
[测试测量]
三相电动机编程控制工作原理及方案
本文介绍了采用Renesas公司MC16C/28系列的CPU产品,运用120 o 梯形波交变,通过电动机感应电压的过零点来估测转子位置,从而实现表面安装永磁式同步电动机(SPMSM)的无位置传感器型驱动的方法。 通过变频技术和脉宽调制技术对交流电动机转速和位置进行数字控制是电动机控制的发展趋势,永磁式同步电动机(PMSM)具有结构简单、体积小、易于控制、性能优良等优点。用单片机对电动机进行数字控制是实现电动机数字控制的最常用的手段。 电动机控制 图1 三相电动机驱动 图2 电动机控制硬件框图 逆变器控制 电能(商用电源)一般是通过一个电源系统来提供的。在这种场合,商用电源的电压、频率和相位在严格的控制之下被固定
[工业控制]
三相电动机<font color='red'>编程</font>控制工作原理及方案
CapSense:可编程电容式感应理想方案
CapSense在实现时采用了两种触摸感应方式,CapSense逐次逼近(CSA)和CapSense增量求和(CSD),这两种方式均经过了优化,因而能够应对设计电容感应系统时所遇到的种种挑战。CSA和CSD方式均在扫描之间定期更新动态基线,以减少环境变化带来的影响。这样,随着具体设备的温度的变化,基线也随之进行调整。这种变化趋势由基线进行自动追踪,以抵消温度和湿度变化带来的影响。在这种方式下,可编程电容式感应解决方案能够给设计者提供更大的有效设计区域,从而能够满足设计方案中多项因素的要求。 此外,通过联合运用屏蔽电极和保护传感器,并在电容式感应中采用CSD方法,可以让设计方案真正达到防水的效果。这种触摸方案提供了可靠的触摸检测功
[模拟电子]
什么是位逻辑指令?plc位逻辑指令有哪些?plc位逻辑指令应用方法图解
位逻辑指令是plc编程中最基本、使用最频繁的指令,按不同的功能和用途具有不同的形式,总的来说可以分为下述几大类:标准位逻辑指令、置位/复位指令、立即位逻辑指令、其他位逻辑指令。 位逻辑指令分类 标准位逻辑指令包括常开触点、常闭触点和输出线圈指令;置位/复位指令包括置位指令、复位指令、置位优先RS触发器指令和复位优先RS触发器指令;立即位逻辑指令包括立即常开或立即常闭触点指令、立即输出线圈指令、立即置位指令、立即复位指令,指令中都带有I标识;其它位逻辑指令包括取反指令、上升沿指令、下降沿指令和空操作指令。 标准位逻辑指令 下面昌晖仪表以起保停控制程序为例来讲解一下位逻辑指令的使用。要求编写起保停控制程序,即按下瞬动按钮I0.
[嵌入式]
什么是位逻辑指令?plc位逻辑指令有哪些?plc位逻辑指令应用方法图解
TQ2440 学习笔记—— 9、嵌入式编程基础知识【arm-linux-gcc 选项】
自己刚开始看的时候,总是沉不下心,后面硬是硬着头皮看完!现在再重新看一遍,做下记录!方便以后阅读,因为有些东西挺容易忘的。 一、交叉编译工具选项说明 1、arm-linux-gcc 选项 一个C/C++ 文件要经过预处理、编译、汇编、和链接 等4个步骤才能变成可执行文件;在Windows 下我们只需要单机几个按钮即可编译,但在ARM平台上,我们必须使用交叉编译工具。 预处理:——得到 ” .i “文件。 使用的工具 arm-linux-cpp 编译:——将上述的” .i “文件“翻译”成汇编代码。 使用的工具为ccl(它的名字就是ccl,不是arm-linux-ccl) 汇编:——将上一步的代码翻译成符合一
[单片机]
TQ2440 学习笔记—— 9、嵌入式<font color='red'>编程</font>基础知识【arm-linux-gcc 选项】
单片机编程经验总汇
经验之一:用“软件陷阱+程序口令”对付PC指针的弹飞 当CPU受到外界干扰,有时PC指针会飞到另一段程序中,或跳到空白段去。其实,如果PC指针飞到空白段去,倒也好处理。只要在空白段设立软件陷阱(拦截指令),将程序拦截到初始化段或程序错误处理段。但是,如果PC指针飞到另一段程序中去了,系统如何办?小匠在这里推荐一种方法——程序口令,思路如下: 1、首先,程序必须模块化。每个模块(子程序)执行一个功能。每个模块只有一个出口(RET)。 2、设立一个模块(子程序)ID寄存器。 3、为每个子程序配置一个唯一的ID号码。 4、每当子程序执行完毕,要返回(RET)之前, 先将本子程序的ID号
[工业控制]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved