采用STC89C52单片机的温度控制系统设计

发布者:breakthrough2最新更新时间:2018-03-19 来源: eefocus关键字:STC89C52  单片机  温度控制系统 手机看文章 扫描二维码
随时随地手机看文章

    本文给出了采用STC89C52单片机进行自适应控制来控制PWM波,进而控制电炉的加热,以实现温度控制的设计方法。这套温度测控系统弥补了传统PID控制结构在特定场合下性能下降的不足。与传统的系统相比,该电路结构简单,测温精度高,温度控制误差小,并在不同时间常数下均可达到技术指标。文章同时给出了用串口调试精灵将PID控制器的输出和温度采样值显示在PC机上,以方便温度的监控的实现方法。

    目前,水温控制被广泛应用于食品、医药、化工、家电等很多领域,水温控制的好坏直接影响着产品的品质,因此,水温控制具有十分重要的意义。本设计的任务与要求为1 L水由1 kW的电炉加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。主要性能指标:温度设定范围为25.0~100℃,最小区分度为0.1℃,温度控制的静态误差小于或等于0.1℃,用SMC1602A液晶显示模块显示实际水温和PID控制算法中的三个主要参数Kc、Ti、Td的赋值,用串口调试精灵将PID控制器的输出和温度采样值显示在PC机上。

1 系统方案
    本设计以STC89C52单片机为核心,采用了温度传感器DS18B20、RS232标准接口及PID控制算法对温度进行控制。
    该水温控制系统是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算,到输出控制电炉加热功率以实现水温控制的全过程。本设计实现了水温的智能化控制以及提供完善的人机交互界面及PC机与单片机通信接口,系统由PC机与单片机通信模块、温度检测及其显示模块、PID控制算法等模块组成,其特点在于采用PC机与单片机通信,系统框图如图1所示。

a.JPG

    2 硬件电路设计
    本电路总体设计包括四部分:主机控制部分(STC89C52)、温度采样与显示电路、温度控制电路、PC机与单片机通信电路。
2.1 主机控制部分
    主机控制部分是电路的核心,系统的控制采用单片机89C52。单片机89C52内部有8 KB单元的程序存储器以及512 B的数据存储器,因此,系统不必扩展外部程序存储器和数据存储器,这样就可以大大减少系统硬件部分的复杂度。
2.2 温度采样与显示电路
    系统的信号采集与显示电路主要由温度传感器DS18B20和SMC1602A液晶显示模块两部分组成。
    DS18B20采用独特的单线接口方式,在与微处理器连接时,仅需要一条口线即可实现微处理器与DS18B20的双向通信。测温范围为-55~+125℃,固有测温分辨率为0.5℃,工作电源为3~5 V/DC,在使用中不需要任何外围元件,测量结果以9~12 b数字量方式串行传送,适用于DN15~25、DN40~DN250各种介质工业管道和狭小空问设备的测温。
    SMC1602液晶显示器以其微功耗、小体积、使用灵活等诸多优点在袖珍式仪表和低功耗应用系统中得到越来越广泛的应用。液晶显示器通常可分为两大类,一类是点阵型,另一类是字符型。点阵型液晶通常面积较大,可以显示图形;而一般的字符型液晶只有两行,面积小,只能显示字符和一些很简单的图形,简单、易控制且成本低。目前,市面上的字符型液晶绝大多数是基于HD44780液晶芯片的,所以控制原理是完全相同的,为HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。字符型LCD通常有14条引脚线(市面上也有很多16条引脚线的LCD,多出来的2条线是电源线VCC(15脚)和地线GND。
2.3 温度控制电路
    此部分电路主要由光电耦合器、三极管和继电器组成。光电耦合器的耐压值为400 V,它的输出级经三极管将功率放大后控制继电器常开触点的通断,从而最终达到控制电炉子的目的,100 Ω电阻与0.01 μF电容组成双向可控硅保护电路。
2.4 PC机与单片机通信电路
    为了使系统具有更好的人机交换界面,在系统设计中我们通过Visual BasIC语言设计了微机控制界面。系统与微机的通信大大提高了系统的各方面陛能。
    由于单片机89C52串行口为TTL电平,而PC机为RS232电平,因此,系统采用了MAX232电平转换芯片来进行电平转换。
    因为系统设计了通信功能,即主系统(89C52)和PC机的通信,所以在观察PID控制器的输出时更加明显,很大程度上降低了参数整定的难度。另外,通过可视化窗口能够看到系统的采样值。


3 软件设计
    本系统的软件设计主要包括三大部分:PC机与单片机通信模块的软件设计、温度采样与显示电路模块的软件设计、温度控制模块的软件设计。
3.1 主程序流程图
    主程序流程如图2所示,程序主要完成以下的几部分任务:

b.JPG

 

    (1)初始化:设定各参数的初始值,设定串行口、定时器以及液晶显示模块。
    (2)PC机与单片机通信:此部分程序主要完成数据在PC机和单片机间的相互发送,其主要通过89C52单片机的半双工串行口完成,从而完成与微机控制接口RS232的连接及通信的控制。
    (3)温度采集及其显示:主要完成温度信号的采集及其对转换后的数字量进行处理,进而用字符型液晶显示模块将实时温度进行显示。
3.2 PID控制算法
    PID算法是此温控系统性能好坏的决定性因素。其一般算式及模拟控制规律表达式如下:
    c1.jpg
    式中,u(t)为控制器的输出;e(t)为偏差,即设定值与反馈值之差;Kc为控制器的放大系数,即比例增益;Ti为控制器的积分常数;Td为控制器的微分时间常数。PID算法的原理即调节Kc、Ti、Td三个参数,使系统达到稳定。
    由于PID的一般算式不易与单片机处理,因此,在设计中采用了增量型PID算法。将式(1)转换成
   c.JPG


    式(3)中的u(k)即输出PWM波的导通时间。其控制算法如图3所示。

d.JPG

    4 测试方法与测试结果
    4.1 测试方法
    在电炉子中放入1 L清水,电炉子和控制系统相连,给系统上电,系统进入准备工作状态。分别设定温度为35.3℃、40.2℃、45℃、60℃、74.0℃、81℃,观察设定温度和实际温度,并记录数据。填写表1,同时观察水温变化的动态情况,并记录温度稳定的时间,填写表2。
4.2 测试结果
    设定温度与实测温度的数据对比如表1所列。表2所列是温度稳定和时间的关系,表2中的设定温度为50℃,每隔30 s记录实测温度。

e.JPG

    5 结论
    从表1中的数据可知,系统的误差基本稳定在±0.3℃,因而能很好地满足系统的设计要求。从表2所得的数据可知,系统运行5 min时,基本达到了稳定,说明系统能很好地控制温度达到理想值,为需要精确控制温度的任务提供了参考。同时,系统实现了PC机与单片机的通信,把控制参数和控制结果显示PC机上,方便监控,实现了温度的控制和智能监控。

关键字:STC89C52  单片机  温度控制系统 引用地址:采用STC89C52单片机的温度控制系统设计

上一篇:基于CH340T 的STC89C52RC编程器设计
下一篇:采用8051单片机的变化空调机智能控制的设计与实现

推荐阅读最新更新时间:2024-03-16 15:57

SN 8 位单片机 SN8P2743 应用实践(2)
SN8P2743 是一较新的型号,内部含有放大器,比较器,AD 转换器并且有外部基准电压参考输入.....4K*16位 空间,感觉上比较 价廉物美! 通常,我们使用SN单片机的 AD 功能时,如果选择外部基准电压,可以利用廉价的 TL431 提供 2.5V 左右的高稳定度电压,即使通着电的240℃高温电烙铁靠上去,TL431 的输出波动也仅仅 1~3mV ,此时,系统可以把 5V 基准时得到的 12BIT AD 变成 2.5V 基准得到了 12BIT AD,这是非常划算的举措! ---- 一方面,等同于使用了一只 2 倍放大的无偏移,无失调,无温飘的放大电路,另外一方面,让AD 的参考值具有高达 50ppm 的温度系数! 我就在
[单片机]
利用小型MCU实现LED照明的色彩控制
LED用于通用照明已指日可待。LED在通用照明系统中优势很多,如寿命更长以及效率更高。然而, LED技术还面临着一些挑战。其中一个挑战就是如何产生高品质的白光。白光LED的构成包含了蓝光LED 和能将光输出移至光谱的其他波段的一种荧光粉。许多白光LED都无法产生高显色指数(Color Rendering Index,CRI),该参数用于衡量光源真实重现色彩的能力。 通过混合两种或两种以上颜色的LED光,可以获得品质更高的白光系统。在这些多色系统中,每种色源的光输出会随时间和温度而漂移。光传感器和小型单片机(MCU)可用于维持特定颜色和相关色温(Correlated Color Temperature,CCT)。在本文中,我们将进一
[电源管理]
利用小型<font color='red'>MCU</font>实现LED照明的色彩控制
开发设计单片机应用系统应注意的问题
作为一名电子产品的专业设计人员来讲,开发和设计单片机应用系统除考虑电磁干扰问题之外,还应考虑如下问题: 1.注意低功耗设计 目前,绿色、环保、节能等词汇越来越频繁地出现在人们的生活中,连GDP都有绿色GDP。对于每个电子产品的设计者来说,都不能不考虑产品的低功耗设计问题。众所周知,各种电子产品的供电方式有两种:一种是电池供电系统;另一种是交流供电系统。对于电池供电系统来说,为了延长电池的使用寿命,必须降低整个系统的功耗。如手机,每隔3-6天就要充电,笔记本电脑充满电最长时间能用7-8小时,最短时间的只能用1-2小时左右。对于交流供电系统来说,虽然没有充电的限制,也是功耗越低越好。两件产品功能相同,但耗电不同,肯定是功耗低者更有竞争
[单片机]
51单片机学习笔记8 -- OLED显示(SPI)
1.OLED简介 有机发光二极管(Organic Light-Emitting Diode, OLED)又称为有机电激光显示、有机发光半导体。由美籍华裔教授邓青云(Ching W. Tang)于1979年在实验室中发现。OLED显示技术具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点。 1.2 OLED结构 由基板、阴极、阳极、空穴注入层(HIL)、电子注入层(EIL)、空穴传输层(HTL)、电子传输层(ETL)、电子阻挡层(EBL)、空穴阻挡层(HBL)、发光层(EML)等部分构成。其中,基板是整个器件的基础,所有功能层都需要蒸镀到器件的基板上;通常采用玻璃作为器件的基板,但是如果需要制作可弯曲的柔性
[单片机]
51<font color='red'>单片机</font>学习笔记8 -- OLED显示(SPI)
FPGA与单片机实现低频数字式相位测量仪
  本设计采用MCU和FPGA相结合的系统方案,以AVR单片机ATmega128和Altera公司的Cyclone系列EP1C3T100为核心,充分发挥各自的优势,如AVR单片机先进的RISC结构和强劲的运算、控制功能,Altera公司的FPGA运算速度快、资源丰富以及易编程的特点,合理设计,此方案的相位仪具备速度快、稳定可靠、精度高等优点,而且容易实现“智能化”和“自动化”。    1 系统方案设计   1.1 测量方法的比较与选择   目前相位测量的方法主要有两种:   1)DFT测相法即将待测信号通过A/D转换得到f(n),f(n)按离散傅里叶变换得出离散频谱F(k),f(n)和F(k)为傅里叶变换对,通过运
[单片机]
基于单片机的温湿度采集系统的硬件设计
摘要: 采用AT89C2051 单片机为核心配置,以温湿度传感器SHT75、数码管显示、计算机监控系统等部件,通过单片机与智能传感器相连,采集并存储智能传感器的测量数据,并通过RS485 总线来实现PC 上位机与单片机控制模块半双工串行通信。微控制器AT89C2051 通过I2C 总线控制传感器的测量和数据回传,每次将采集到的5 组数据经过计算,修正及补偿后分别传送到PC 端存储和显示模块进行实时显示。经过实验测试得出结论:温度测量精度为±0.3 ℃,湿度测量精度为±2%RH,各项指标均达到了课题的设计要求。   利用AT89C2051 单片机强大的功能,同时结合智能传感器SHT75 测量温湿度有快速和使用简便等特点,设计了一
[工业控制]
基于<font color='red'>单片机</font>的温湿度采集系统的硬件设计
ATmega16 MCU控制寄存器MCUCR
MCU 控制寄存器包含了电源管理的控制位。 · Bits 7, 5, 4 – SM2..0: 休眠模式选择位 2、1 和0如 Table 13 所示,这些位用于选择具体的休眠模式。 · Bit 6 – SE: 休眠使能 为了使MCU 在执行SLEEP 指令后进入休眠模式, SE 必须置位。为了确保进入休眠模式是程序员的有意行为,建议仅在SLEEP 指令的前一条指令置位SE。MCU 一旦唤醒立即清除SE
[单片机]
ATmega16 <font color='red'>MCU</font>控制寄存器MCUCR
采用C8051F单片机实现半导体激光器驱动电源的设计
半导体激光器(LD)体积小,重量轻,转换效率高,省电,并且可以直接调制。基于他的多种优点,现已在科研、工业、军事、医疗等领域得到了日益广泛的应用,同时其驱动电源的问题也更加受到人们的重视。使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1总体结构框图 本系统原理如图1所示,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎
[单片机]
采用C8051F<font color='red'>单片机</font>实现半导体激光器驱动电源的设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved