基于ATmega16L微处理器的电液伺服控制系统设计

发布者:数字小巨人最新更新时间:2018-03-23 来源: eefocus关键字:ATmega16L  微处理器  电液伺服控制系统 手机看文章 扫描二维码
随时随地手机看文章

    针对电液伺服闭环控制过程中,设定信号不断发生变化,电液阀门位置定位精确度较低的难题。采用ATmega16L作为核心控制器,并配有高精度A/D、D/A转换器,通过对阀门开度控制信号和位置反馈信号进行采集、转换、计算和比较,发出控制信号决定并执行换向阀的换向、交流伺服电动机的起停运转,推动液压缸推杆的伸缩,进而对阀门转角大小、开度百分比进行精确定位。

    随着电力电子技术、电机控制技术、计算机技术和传感器技术的发展,交流伺服控制技术已逐步取代了传统的直流控制技术,越来越多地应用到各种工业控制领域中。现代制造行业的迅速崛起,对伺服控制系统的控制性能提出了更高的要求。要求提高伺服系统的移动速度、跟随精度和定位精度。而提高伺服控制系统的动态性能主要有以下两个途径:一是采用高性能的伺服电动机和测量装置,提高伺服控制系统的硬件性能;二是采用新的控制策略,提高软件系统的性能。本设计采用了性价比较高的单片机控制器取代传统的运算放大器实现信号的处理,智能控制器具有很强的数据采集、处理、记忆、存储及通信等功能,具有较高的精度、较好的人机界面和故障诊断能力。

    1 电液伺服控制系统的硬件设计

    硬件电路由ATmega16L控制器及其最小系统、信号检测模块、PWM输出缓冲模块、驱动电路、RS 485通信模块、液晶显示及按键模块组成。其中,ATmega16L控制器最小系统包括单片机复位电路、电源配置电路、时钟电路等。图1为控制器硬件组成结构框图。

a.JPG

    1.1 ATmega16L控制器及其最小系统电路设计

    本系统给定阀门开度指令信号,通过检测位置和转速信号形成闭环系统,输出PWM控制信号,通过驱动电路和控制主电路开关管,进而控制电机的转速和阀门的开度。位置和转速信号的输入要用到ADC转换模块。

    1.2 阀门位置信号采集电路设计

    在阀门智能控制系统中,通过控制液体的流量和压力等参数来控制阀门开度值。调节管道系统中介质的流量,从而使控制参数符合要求。远程控制中心送来的设定信号可以是标准的DC 4~20 mA的电流信号,也可以是1~5 V的电压信号。键盘设定的0~100 %的开度百分比,智能电液执行机构控制器通过状态选择开关键来接收控制信号。

    1.3 检测及信号调理电路设计

    系统中需要检测的信号包括负载电流、负载电压、主电路母线电压、电机转速信号等。

    电流检测采用霍尔电流传感器,霍尔电流传感器是一种利用霍尔效应工作的非接触式传感器,具有精度高、线性好、频带宽、响应快、过载能力强和不损失被测电路能量等诸多优点,并且已经有比较成熟的工业产品。

    电流检测的霍尔电流传感器匝比为2 000:1,传感器送出的弱电流信号经过调理后便可送入控制器中进行运算,由式(1)可得。霍尔输入经过电阻后得到±2.5 V的电压Ui,经过偏移(TL431的输出电压为2.5 V)后在A点得到0~2.5 V的电压UA,经过运算放大器放大后在输出端得到0~2.5 V的电压Uo,可直接送入ATmega16L中进行处理。此处后级运放的倍数可通过电阻匹配实现,所以同种电流可用于多处电流检测中。根据运算放大器虚短、虚断的概念,计算过程如下:

   b.JPG

    1.4 驱动电路设计

    驱动电路主要作用为将控制输出信号放大并驱动功率晶体管。它输出的脉冲幅值、波形直接影响到功率晶体管的开关特性、整机效率与调节特性。

    本设计采用单相电压型桥式逆变电路,功能是将控制板送过来的功率较小的信号放大为能驱动IGBT开通关断的功率较大的信号。对前级控制电路输出的PWM信号进行光耦隔离。

    1.5 PWM信号输出缓冲电路

    单片机引脚输入电压为0~5 V,为避免测试或使用过程中将单片机引脚烧掉,所以在单片机的PWM输出引脚后可加一级缓冲电路后再送入驱动电路中。这样,一方面避免单片机引脚直接与驱动电路相连,另外一级非门缓冲电路可增加PWM信号的驱动能力。

    2 电液伺服控制系统的软件设计

    软件程序模块主要包括:系统自检及其初始化模块、数据信息采集模块、键盘的操作及其处理模块、(零点、灵敏度、行程)主要参数调节模块、系统监控程序模块等。


    2.1 主程序流程图设计与实现

    其主要流程分为:单片机控制器内部资源(看门狗、定时器、串行口、A/D转换、I/O口设定、中断向量等)及其外围电路的初始化,数据采集及滤波处理、按键操作处理、参数调整及液晶显示、故障检测、系统过程监控等。主程序流程图如图2所示。

c.JPG



    2.2 整定参数调整模块

    本智能控制器参数调整模块主要是对控制系统的零点(ZERO)、灵敏度(PROP)、和行程(SPAN)进行设定和调整。对执行机构输出电流“调零”、“调满”或对阀门开度“调大”、“调小”时,传统做法通常采用电位器或基准测量仪器进行校对,传统的方法操作复杂、误差较大、系统抗干扰性较弱。本设计在此基础上进行改进,首先将零点、灵敏度、行程所对应模拟量纲转换为数字量纲,A/D转换器分辨率为10位,即可以得出采样点数为:N=210=1 024。

    本智能电液执行机构零点调整范围为全行程的0~20%,其对应数字量纲为0~203,零点调整为一闭环控制调节过程,阀门开度反馈值(BACK)经模/数转换之后,并经过换算处理,之后得到的数值为0~1 023。其位移传感器转角分布图如图3所示。其中ALLEND+ZERO为零点可调范围,0ALL为位移传感器运行行程,当|ZERO—BACK|≤PROP时,电动机停止转动。与此同时,实时将零点调整值与阀门的开度反馈值作比较,根据比较结果确定电动机正反转运行状态。图4是设定零点过程流程图。参照零点设定方法对行程进行设定。

d.JPG

     2.3 系统监控程序设计
    系统监控程序是单片机控制器按照预定的操作方式进行运转的程序。它完成人机对话和远程控制等功能,是单片机系统程序的框架。主要任务为系统自检、初始化、处理键盘命令、处理接口命令、处理条件触发并调度执行模块及完成显示等。系统监控流程图如图5所示。

e.JPG


    3 控制系统的调试
    主控单元的调试是调试核心,其主要为ATmega16L微处理的数据处理。首先编写开环控制程序,然后编写闭环控制智能算法。查看相应的寄存器功能。闭环控制需要输出调试完成后联合模拟试验箱进行调试。显示单元调试通过液晶显示控制系统的各项参数,并且配合按键完成相应的功能。数据输出单元调试主要为D/A功能调试,运放隔离调整电路的调试。通信输出的调试主要观察控制器向上位机输出数据,通过串口调试软件进行观察。
    对该执行机构的控制器进行小扰动和大扰动实验,其仿真结果如图6,图7所示。其中实线表示设定信号,虚线表示反馈信号。

 


g.JPG

    
    主要参数及其调试结果如表1所示。

f.JPG

    4 结语
    本电液伺服控制系统采用性价比较高的ATmega16L微处理器代替传统的模拟仪表,针对阀门运转速度在不同阶段的变化情况,经过阀门位置采集、检测反馈模块及电机驱动、正反转控制模块等,成功地解决了阀门位置定位精准度低这一难题。灵敏度较高、操作灵活、响应速度快、抗干扰性强;有效地克服了突发性的停电或泵停工作、油管或水管、气管内部产生的水锤现象等故障,进而减少水锤冲击。该设计已投入工业现场,运行平稳,达到预期目标。


关键字:ATmega16L  微处理器  电液伺服控制系统 引用地址:基于ATmega16L微处理器的电液伺服控制系统设计

上一篇:基于单片机ATMega16控制的CAN总线与RS-232转换器电路
下一篇:利用USB接口进行ATMAGE128与上位微机之间数据传输的实现

推荐阅读最新更新时间:2024-03-16 15:58

基于DSl210的微处理器存储系统电源监视电路的基
本文对非易失性控制器芯片DSl210的主要性能进行了介绍,并给出了利用DSl2lO芯片设计微处理器存储系统电源监视电路的基本设计方法。   l DSl210芯片的主要功能   DSl210电源监控芯片是采用CMOS工艺制作的电源监控器件,可以对微处理器系统的供电电源进行实时监视。DSl210的电源稳定度探测范围为5~10%。当检测到系统供电电源的波动范围超过稳定工作要求的范围时,DSl210就会对处理器系统实行写保护,并把系统的供电电源切换到电池供电状态,以确保整个系统的正常工作。为保证监控的精确性,DSl210采用了低泄漏的CMOS工艺,可在最低电池功耗下提供精确的电压检测。DSl210在加电条件下可以自动检测电池,其电池
[电源管理]
基于DSl210的<font color='red'>微处理器</font>存储系统电源监视电路的基
通过PWM做一个简单的呼吸灯
PWM(脉冲宽度调制)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 本例中我们通过MC9S12XS128微处理器来制作一个简单的呼吸灯,我们利用级联的PWM0和PWM1来做PWM的输出。 如下为本例中配置PWM所用到的寄存器简介: PWMCTL寄存器 CON67=0时,6和7是独立的 8bit PWM通道 =1时,6和7级联为一个 16bit PWM通道 CON45=0时,4和5是独立的 8bit PWM通道 =1时,4和5级联为一个 16bit PWM通道 CON23=0时,2和3是独立的 8bit PWM通道 =1时,2和3级联为一个 1
[单片机]
通过PWM做一个简单的呼吸灯
BIST在SoC片上嵌入式微处理器核上的应用
引 言 随着科技的不断发展,集成电路的制造工艺和设计水平得到了飞速提高,设计者能够将非常复杂的功能集成到硅片上。将PCB板上多块芯片的系统集成到一块芯片内部,这个芯片就是系统级芯片,即SoC(System on Chip)。SoC芯片的特点主要有两方面:第一是其高度的复杂性,第二是大量运用可重用的IP(Intellectual Property)模块。以往的芯片设计往往只专注于某个特定功能的模块设计,例如压缩/解压、无线模块、网络模块等。而一块SoC芯片的功能可能是多个独立模块的总和。另外,芯片的制造需要经历化学、冶金、光学等工艺过程,在这些过程中可能引入物理缺陷导致其不能正常工作。因此对芯片的测试成为必不可少的环节。可测性设
[单片机]
BIST在SoC片上嵌入式<font color='red'>微处理器</font>核上的应用
基于爱特梅尔AVR的微型节能自动浸焊机的软硬件设计
一、项目概述 1.1 引言 目前,焊接插件式线路板一般采用波峰焊接方法和浸焊方法。波峰焊接机虽然焊接速度快、焊接质量高,但因其价格高、体积大、维护复杂等因素用于大批量加工的场合,特别适用于流水线作业的大型工厂。浸焊机具有结构简单、体积小、焊接质量好、成本低、可视性强等特点,用于小批量生产,特别适合用于中小企业、各种科研单位和教学场所。然而,在目前的市场当中存在的浸焊机仍然存在能源浪费严重的现象。 本设计在对目前市场上的各种浸焊机进行分析比较的基础上,针对目前市场已有浸焊机耗能大、不灵活等缺点,从节能环保的角度出发,通过采用爱特梅尔(Atmel)公司AVR-8位单片机(ATXMEGA64A3)设计出一种微型节能自动浸焊机。
[单片机]
基于爱特梅尔AVR的微型节能自动浸焊机的软硬件设计
单片机微处理器看门狗监控电路
  在微处理器的工作过程中,如遇到来自电源或外界的干扰,有可能使读出的指令或程序指针地址发生错误,在这种情形下,将使微处理器错误地执行指令,或者到错误的地址去取指令,以至发生混乱,使整个系统无法正常地工作。微处理器监控电路实际上是一个复位电路,其作用是及时地发现上述情况,并向微处理器发出复位信号,以控制系统重新工作。常用的监控电路具有两个功能,一个功能是对电源电压的监控,通过对电源电压波动范围的设置,此电路通过电压比较器监视电源电压,一旦电源电压低于设定值,比较器的输出控制产生复位电路,使系统重新工作。监控电路的另一个功能是对执行程序的监视,此电路的框图如图1所示,它由一个计数器和复位电路构成,当计数器计数溢出时,将控制复位电路产生
[单片机]
单片机<font color='red'>微处理器</font>看门狗监控电路
eASIC加入OpenPOWER基金会,提供定制化设计的加速器芯片
加州圣克拉拉--(美国商业资讯)--作为一家致力于交付定制集成电路(IC)平台(eASIC 平台)的无晶圆厂半导体公司,eASIC Corporation (@easic)今日宣布其已加入OpenPOWER基金会,这是一个基于POWER微处理器架构的开放开发社区。 OpenPOWER基金会正日益壮大,越来越多像eASIC这样的技术企业加入其中,携手构建先进的服务器、网络、存储和加速技术以及行业领先的开源软件,旨在向下一代超大型云数据中心开发人员提供更多选择、控制和灵活性。该组织让POWER硬件和软件首次可用于开放开发,同时向其他企业提供POWER知识产权许可,大大扩展了基于该平台的创新者生态系统。 eASIC将提供其最
[嵌入式]
基于微处理器LPC2210实现μC/OS-Ⅱ关键算法的改进设计
1 引言 当前,嵌入式开发领域对产品的要求越来越多.如通信速率,稳定性,产品功能,可扩展性,可移植性,适应性等。为了适应这些要求,作者对低版本的μC/OS-II做了一些改进。并选择一款性价比高的微处理器LPC2210作为其运行的硬件平台。本文论述的高级继电器保护装置除可以动态地实现模拟量和开关量的数据采集外,还可以作为web终端通过远程主机对终端进行控制或访问。 2 μC/OS-II其内核结构 宏观的讲,μC/OS-Ⅱ大致分成内核结构、任务管理、时间管理、任务之间的通信与同步和CPU的移植等5个部分。由于嵌入式多任务应用功能软件系统是应用设计的范畴,所以并不包含在内核中。内核保留给上层应用的接口有3个,分别是软保护、任务间的通
[单片机]
基于<font color='red'>微处理器</font>LPC2210实现μC/OS-Ⅱ关键算法的改进设计
基于ARM微处理器的嵌入式温度调节器设计
本文针对无影照明系统中色温控制的难题,设计了一种基于ARM微处理器的嵌入式温度调节器,整个智能温度控制器由微控制器、数字显示模块、温度传感器、PWM加热模块、时钟电路等多个部件组成,设计了其中的PID调节电路、串口通信电路、微控制器外围通信接口、PWM加热控制电路以及软件模块,并搭建起整个软硬件系统。最后进行了实验和验证,结果表明,该嵌入式PID温度控制器能够满足设计要求,具有良好的调节精度,并保持恒温控制特性,可以投入实际应用。 温度控制器是一种重要的控制设备,在性能要求敏感的家用电器中,温度控制器是必备的控制系统之一,其在大型工业和日常生活等领域都具有广阔的应用前景。很多应用领域,需要精度较高的恒温控制,例如,根据
[单片机]
基于ARM<font color='red'>微处理器</font>的嵌入式温度调节器设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved