STM32端口配置

发布者:technology78最新更新时间:2019-08-24 来源: eefocus关键字:STM32  端口配置 手机看文章 扫描二维码
随时随地手机看文章

1、上拉输入:上拉就是把电位拉高,比如拉到Vcc。上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!强弱只是上拉电阻的阻值不同,没有什么严格区分。


2、下拉输入:就是把电压拉低,拉到GND。与上拉原理相似。


3、浮空输入:浮空(floating)就是逻辑器件的输入引脚即不接高电平,也不接低电平。由于逻辑器件的内部结构,当它输入引脚悬空时,相当于该引脚接了高电平。一般实际运用时,引脚不建议悬空,易受干扰。 通俗讲就是让管脚什么都不接,浮空着。


4、模拟输入:模拟输入是指传统方式的输入。数字输入是输入PCM数字信号,即0,1的二进制数字信号,通过数模转换,转换成模拟信号,经前级放大进入功率放大器,功率放大器还是模拟的。


5、推挽输出:可以输出高,低电平,连接数字器件;推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源低定。


6、开漏输出:输出端相当于三极管的集电极。要得到高电平状态需要上拉电阻才行,适合于做电流型的驱动,其吸收电流的能力相对强(一般20mA以内)。


7、复用输出:可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)。端口必须配置成复用功能输出模式(推挽或开漏)。


在STM32中选用IO模式,下面是参考网上的总结一下。


(1)GPIO_Mode_AIN 模拟输入---应用ADC模拟输入,或者低功耗下省电


(2)GPIO_Mode_IN_FLOATING 浮空输入---可以做KEY识别


(3)GPIO_Mode_IPD 下拉输入--- IO内部下拉电阻输入


(4)GPIO_Mode_IPU 上拉输入---IO内部上拉电阻输入


(5)GPIO_Mode_Out_OD 开漏输出---IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能。

(6)GPIO_Mode_Out_PP 推挽输出---IO输出0-接GND,IO输出1 -接VCC,读输入值是未知的。

(7)GPIO_Mode_AF_OD 复用开漏输出---片内外设功能(TX1,MOSI,MISO.SCK.SS)。

(8)GPIO_Mode_AF_PP 复用推挽输出---片内外设功能(I2C的SCL,SDA)。


1.推挽输出


可以输出高、低电平,连接数字器件;推挽结构一般是指两个三极管分别受两个互补信号的控制,总是在一个三极管导通的时候另一个截止。高低电平由IC的电源决定。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。

2.开漏输出


输出端相当于三极管的集电极,要得到高电平状态需要上拉电阻才行。适合于做电流型的驱动,其吸收电流的能力相对强(一般20mA以内)。开漏形式的电路有以下几个特点:


1、利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻、MOSFET到GND。IC内部仅需很小的栅极驱动电流。


2、一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的速度。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)


3、开漏输出提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。


4、可以将多个开漏输出连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系,即“线与”。可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。


关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。


关于上拉输入、下拉输入、模拟输入、浮空输入、推挽输出、开漏输出、复用输出的区别

 3.浮空输入


对于浮空输入,一直没找到很权威的解释,只好从以下图中去理解了

关于上拉输入、下拉输入、模拟输入、浮空输入、推挽输出、开漏输出、复用输出的区别

由于浮空输入一般多用于外部按键输入,结合图上的输入部分电路,我理解为浮空输入状态下,IO的电平状态是不确定的,完全由外部输入决定,如果在该引脚悬空的情况下,读取该端口的电平是不确定的。

4.上拉输入/下拉输入/模拟输入


这几个概念很好理解,从字面便能轻易读懂。

5.复用开漏输出、复用推挽输出


可以理解为GPIO口被用作第二功能时的配置情况(即并非作为通用IO口使用)

6.总结在STM32中选用IO模式


1、浮空输入GPIO_IN_FLOATING ——浮空输入,可以做KEY识别,RX1

2、带上拉输入GPIO_IPU——IO内部上拉电阻输入

3、带下拉输入GPIO_IPD—— IO内部下拉电阻输入

4、模拟输入GPIO_AIN ——应用ADC模拟输入,或者低功耗下省电

5、开漏输出GPIO_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能

6、推挽输出GPIO_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的

7、复用功能的推挽输出GPIO_AF_PP ——片内外设功能(I2C的SCL,SDA)

8、复用功能的开漏输出GPIO_AF_OD——片内外设功能(TX1,MOSI,MISO.SCK.SS)


7.STM32设置实例


1、模拟I2C使用开漏输出_OUT_OD,接上拉电阻,能够正确输出0和1;读值时先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以读IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);

2、如果是无上拉电阻,IO默认是高电平;需要读取IO的值,可以使用带上拉输入_IPU和浮空输入_IN_FLOATING和开漏输出_OUT_OD;

8.通常有5种方式使用某个引脚功能,它们的配置方式如下:


1、作为普通GPIO输入:根据需要配置该引脚为浮空输入、带弱上拉输入或带弱下拉输入,同时不要使能该引脚对应的所有复用功能模块。

2、作为普通GPIO输出:根据需要配置该引脚为推挽输出或开漏输出,同时不要使能该引脚对应的所有复用功能模块。

3、作为普通模拟输入:配置该引脚为模拟输入模式,同时不要使能该引脚对应的所有复用功能模块。

4、作为内置外设的输入:根据需要配置该引脚为浮空输入、带弱上拉输入或带弱下拉输入,同时使能该引脚对应的某个复用功能模块。

5、作为内置外设的输出:根据需要配置该引脚为复用推挽输出或复用开漏输出,同时使能该引脚对应的所有复用功能模块。


注意如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。比如要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。如果要使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。

关键字:STM32  端口配置 引用地址:STM32端口配置

上一篇:STM32按键的短按/长按/双击
下一篇:stm32内存管理分配

推荐阅读最新更新时间:2024-11-08 12:57

STM32启动过程与向量表
一.首先看一下一个典型的STM32程序的二进制文件: 注意开始地址的前2“字”,0x2000870,0x08000635. 二.在工程文件里,进入debug模式,点击 “RET”复位 发现MSP就是程序文件的第一个32bit内容,PC则是下一个32bit内容。注意0x08000635与0x08000634:加载到 PC 的数值是奇数( LSB=1) ,表明这是在 Thumb 状态下执行,因为Cortex-M3处理器不能执行ARM指令;另一方面, CM3 中的指令至少是半字对齐的,所以 PC 的 LSB 总是读回 0。 三.再看下STM32的启动文件下的中断向量表 事实上,可以明显地看出,STM32程序的文件的开始地址位
[单片机]
STM32实战六 PWM加移相正交
这一章编写PWM程序,使用TIM3以两个通道,完全映射到PC6和PC7,除普通PWM输出外,增加移相正交PWM功能,为后面的编码器计数模式提供信号源。 PWM.h #ifndef __PWM__ #define __PWM__ extern C { // 兼容C,按C语言编译,Keil5中的包含文件已经加入了C++兼容,不用再加这一段 #pragma diag_remark 368 //消除 warning: #368-D: class unnamed defines no constructor to initialize the following: #include stm32f10x.h #prag
[单片机]
<font color='red'>STM32</font>实战六 PWM加移相正交
STM32 HAL库 printf输出重定向
STM32 HAL库串口输出函数为 HAL_UART_Transmit(&huart1,(uint8_t*)&ch,1,0xFFFF) #ifdef __GNUC__ /* With GCC, small printf (option LD Linker- Libraries- Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif
[单片机]
stm32 j-link IAR下烧写后脱机运行设置
1、 projectEWARMv4lnkarm_flash.xcl // Code memory in FLASH -DROMSTART=0x8008000 -DROMEND=0x8014fff 更改为 // Code memory in FLASH -DROMSTART=0x8000000 -DROMEND=0x8014fff 2、 #define NVIC_VectTab_RAM ((u32)0x20000000) #define NVIC_VectTab_FLASH ((u32)0x08000000)
[单片机]
STM32DAC讲解及代码示例
DAC转换 STM32的DAC模块主要特点有: ① 2个DAC转换器:每个转换器对应1个输出通道 ② 8位或者12位单调输出 ③ 12位模式下数据左对齐或者右对齐 ④ 同步更新功能 ⑤ 噪声波形生成 ⑥ 三角波形生成 ⑦ 双DAC通道同时或者分别转换 ⑧ 每个通道都有DMA功能 DAC_OUT1 - PA4 DAC_OUT2 - PA5 DAC配置步骤 程序代码示例: //DAC通道1输出初始化 void Dac1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; DAC_InitTypeDef DAC_InitType; RCC_APB2PeriphClockCm
[单片机]
STM32DAC讲解及代码示例
STM32IO口8位操作移位的方式
当我们采用并口传输数据的时候都会用如下的方法进行数据传输 #define DATAOUT(x) GPIOB- ODR=x; STM32IO口都是16位的,所以当调用DATAOUT的时候就直接对GPIOB的16个IO口总体进行操作。但是我们如果只是选择高8位或者低8位的时候就需要进行移位操作,到底该怎么移位呢现在我们来看如下代码。 如果我们选择的是0-7位IO口那么传输数据的时候代码如下 void LCD_DrawPoint_16Bit(u16 color) { #if LCD_USE8BIT_MODEL==1 LCD_CS_CLR; LCD_RD_SET; LCD_RS_SET;//дµØÖ· DATAOUT(color 8
[单片机]
浅谈QSPI的特点以及QSPI的三种工作模式
意法半导体STM32F7系列MCU采用高性能的ARM Cortex-M7核心,借助ST的ART Accelerator™和L1缓存,STM32F7微控制器可提供Cortex-M7内核的最高理论性能,而无论代码是从嵌入式闪存还是由外部存储器执行的:1082 CoreMark / 462 DMIPS在216 MHz f CPU。带有新外围设备的智能架构。可利用STM32系列丰富的外设资源来外扩SRAM芯片。STM32F7支持QSPI. 意法半导体MCU STM32F7系列释放了Cortex-M7内核,AXI和多AHB总线矩阵,用于互连内核,外围设备和存储器。具有高达2MB的嵌入式闪存,在某些设备上具有读-写功能。两个用于以太网的通
[单片机]
STM32缺陷之一:串口中断标志位缺陷
根据小道消息,M3内核是有缺陷的,但是这种缺陷不会在大会上想广大群众透露的。我用的是M3内核的stm32,我来寻找一些缺陷。 今天找到的是串口中断标志位缺陷。 我是做四轴飞行器的,没有买遥控器,而是用的无线串口,一开始的想法是stm32接收到串口来的数据后,进入串口中断服务函数,再比对发来的数据进行接下来的动作。 一开始的程序是没有问题的,简单点吧,串口接收到数据后,让LED转换状态。 void USART2_IRQHandler(void) { if(USART_GetITStatus(USART2, USART_IT_RXNE) ==SET) { USART_ClearFlag (USART2
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved