串口DMA发送:
发送数据的流程:
前台程序中有数据要发送,则需要做如下几件事
1. 在数据发送缓冲区内放好要发送的数据,说明:此数据缓冲区的首地址必须要在DMA初始化的时候写入到DMA配置中去。
2. 将数据缓冲区内要发送的数据字节数赋值给发送DMA通道,(串口发送DMA和串口接收DAM不是同一个DMA通道)
3. 开启DMA,一旦开启,则DMA开始发送数据,说明一下:在KEIL调试好的时候,DMA和调试是不同步的,即不管Keil 是什么状态,DMA总是发送数据。
4. 等待发送完成标志位,即下面的终端服务函数中的第3点设置的标志位。或者根据自己的实际情况来定,是否要一直等待这个标志位,也可以通过状态机的方式来循环查询也可以。或者其他方式。
判断数据发送完成:
启动DMA并发送完后,产生DMA发送完成中断,在中断函数中做如下几件事:
1. 清DMA发送完成中断标志位
2. 关闭串口发送DMA通道
3. 给前台程序设置一个软件标志位,说明数据已经发送完毕
串口DMA接收:
接收数据的流程:
串口接收DMA在初始化的时候就处于开启状态,一直等待数据的到来,在软件上无需做任何事情,只要在初始化配置的时候设置好配置就可以了。
判断数据数据接收完成:
这里判断接收完成是通过串口空闲中断的方式实现,即当串口数据流停止后,就会产生IDLE中断。这个中断里面做如下几件事:
1. 关闭串口接收DMA通道,2点原因:1.防止后面又有数据接收到,产生干扰。2.便于DMA的重新配置赋值,下面第4点。
2. 清除DMA 所有标志位
3.从DMA寄存器中获取接收到的数据字节数
4.重新设置DMA下次要接收的数据字节数,注意,这里是给DMA寄存器重新设置接收的计数值,这个数量只能大于或者等于可能接收的字节数,否则当DMA接收计数器递减到0的时候,又会重载这个计数值,重新循环递减计数,所以接收缓冲区的数据则会被覆盖丢失。
5. 开启DMA通道,等待下一次的数据接收,注意,对DMA的相关寄存器配置写入,如第4条的写入计数值,必须要在关闭DMA的条件进行,否则操作无效。
说明一下,STM32的IDLE的中断在串口无数据接收的情况下,是不会一直产生的,产生的条件是这样的,当清除IDLE标志位后,必须有接收到第一个数据后,才开始触发,一断接收的数据断流,没有接收到数据,即产生IDLE中断。
USART 和 DMA 硬件初始化配置
/*--- LumModule Usart Config ---*/
#define LUMMOD_UART USART3
#define LUMMOD_UART_GPIO GPIOC
#define LUMMOD_UART_CLK RCC_APB1Periph_USART3
#define LUMMOD_UART_GPIO_CLK RCC_APB2Periph_GPIOC
#define LUMMOD_UART_RxPin GPIO_Pin_11
#define LUMMOD_UART_TxPin GPIO_Pin_10
#define LUMMOD_UART_IRQn USART3_IRQn
#define LUMMOD_UART_DR_Base (USART3_BASE + 0x4) //0x40013804
#define LUMMOD_UART_Tx_DMA_Channel DMA1_Channel2
#define LUMMOD_UART_Tx_DMA_FLAG DMA1_FLAG_GL2//DMA1_FLAG_TC2 | DMA1_FLAG_TE2
#define LUMMOD_UART_Tx_DMA_IRQ DMA1_Channel2_IRQn
#define LUMMOD_UART_Rx_DMA_Channel DMA1_Channel3
#define LUMMOD_UART_Rx_DMA_FLAG DMA1_FLAG_GL3//DMA1_FLAG_TC3 | DMA1_FLAG_TE3
#define LUMMOD_UART_Rx_DMA_IRQ DMA1_Channel3_IRQn
void Uart_Init(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
/* System Clocks Configuration */
//= System Clocks Configuration ====================================================================//
/* Enable GPIO clock */
RCC_APB2PeriphClockCmd(LUMMOD_UART_GPIO_CLK , ENABLE ); // 开启串口所在IO端口的时钟
/* Enable USART Clock */
RCC_APB1PeriphClockCmd(LUMMOD_UART_CLK, ENABLE); // 开始串口时钟
//=NVIC_Configuration==============================================================================//
/* Configure the NVIC Preemption Priority Bits */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_3);
/* Enable the DMA Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = LUMMOD_UART_Tx_DMA_IRQ; // 发送DMA通道的中断配置
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; // 优先级设置
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = LUMMOD_UART_IRQn; // 串口中断配置
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
//=GPIO_Configuration==============================================================================//
GPIO_PinRemapConfig(GPIO_PartialRemap_USART3, ENABLE); // 我这里没有用默认IO口,所以进行了重新映射,这个可以根据自己的硬件情况配置选择
/* Configure USART3 Rx as input floating */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; // 串口接收IO口的设置
GPIO_InitStructure.GPIO_Pin = LUMMOD_UART_RxPin;
GPIO_Init(LUMMOD_UART_GPIO, &GPIO_InitStructure);
/* Configure USART3 Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; // 串口发送IO口的设置
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; // 这里设置成复用形式的推挽输出
GPIO_InitStructure.GPIO_Pin = LUMMOD_UART_TxPin;
GPIO_Init(LUMMOD_UART_GPIO, &GPIO_InitStructure);
DMA_Uart_Init(); // 串口 DMA 配置
/* USART Format configuration ------------------------------------------------------*/
USART_InitStructure.USART_WordLength = USART_WordLength_8b; // 串口格式配置
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
/* Configure USART3 */
USART_InitStructure.USART_BaudRate = 115200; // 波特率设置
USART_Init(LUMMOD_UART, &USART_InitStructure);
/* Enable USART3 Receive and Transmit interrupts */
USART_ITConfig(LUMMOD_UART, USART_IT_IDLE, ENABLE); // 开启 串口空闲IDEL 中断
/* Enable the USART3 */
USART_Cmd(LUMMOD_UART, ENABLE); // 开启串口
/* Enable USARTy DMA TX request */
USART_DMACmd(LUMMOD_UART, USART_DMAReq_Tx, ENABLE); // 开启串口DMA发送
USART_DMACmd(LUMMOD_UART, USART_DMAReq_Rx, ENABLE); // 开启串口DMA接收
}
void DMA_Uart_Init(void)
{
DMA_InitTypeDef DMA_InitStructure;
/* DMA clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 开启DMA1时钟
//=DMA_Configuration==============================================================================//
/*--- LUMMOD_UART_Tx_DMA_Channel DMA Config ---*/
DMA_Cmd(LUMMOD_UART_Tx_DMA_Channel, DISABLE); // 关DMA通道
DMA_DeInit(LUMMOD_UART_Tx_DMA_Channel); // 恢复缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&LUMMOD_UART->DR);// 设置串口发送数据寄存器
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)LumMod_Tx_Buf; // 设置发送缓冲区首地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; // 设置外设位目标,内存缓冲区 ->外设寄存器
DMA_InitStructure.DMA_BufferSize = LUMMOD_TX_BSIZE; // 需要发送的字节数,这里其实可以设置为0,因为在实际要发送的时候,会重新设置次值
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不做增加调整,调整不调整是DMA自动实现的
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 内存缓冲区地址增加调整
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 外设数据宽度8位,1个字节
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; // 内存数据宽度8位,1个字节
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; // 单次传输模式
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; // 优先级设置
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; // 关闭内存到内存的DMA模式
DMA_Init(LUMMOD_UART_Tx_DMA_Channel, &DMA_InitStructure); // 写入配置
DMA_ClearFlag(LUMMOD_UART_Tx_DMA_FLAG); // 清除DMA所有标志
DMA_Cmd(LUMMOD_UART_Tx_DMA_Channel, DISABLE); // 关闭DMA
DMA_ITConfig(LUMMOD_UART_Tx_DMA_Channel, DMA_IT_TC, ENABLE); // 开启发送DMA通道中断
/*--- LUMMOD_UART_Rx_DMA_Channel DMA Config ---*/
DMA_Cmd(LUMMOD_UART_Rx_DMA_Channel, DISABLE); // 关DMA通道
DMA_DeInit(LUMMOD_UART_Rx_DMA_Channel); // 恢复缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&LUMMOD_UART->DR);// 设置串口接收数据寄存器
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)LumMod_Rx_Buf; // 设置接收缓冲区首地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; // 设置外设为数据源,外设寄存器 -> 内存缓冲区
DMA_InitStructure.DMA_BufferSize = LUMMOD_RX_BSIZE; // 需要最大可能接收到的字节数
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不做增加调整,调整不调整是DMA自动实现的
上一篇:CAN通信标准帧和扩展帧
下一篇:STM32F105 CAN总线数据收发调试
推荐阅读最新更新时间:2024-11-13 11:25
设计资源 培训 开发板 精华推荐
- C3024474_ATMEGA328PB芯片方案验证板
- C8051F560DK,C8051F575 8051 MCU 工业应用开发系统
- 带隔离开关的 FSA832 USB 2.0 高速充电器检测 IC 典型应用电路
- LTM4631EV 2 相、1.5V/20A 降压型稳压器的典型应用电路,具有温度监控功能
- 【涂鸦智能】Mao温湿度传感器
- LT1171HVIQ 的典型应用,2.5A 外部电流限制
- 使用 LT1054IN8 5V 至 ±12V 转换器的典型应用
- 使用 Diodes Incorporated 的 AP1538 的参考设计
- LTC2400 适用于单 5V 电源的差分至单端转换器
- LT1108CS8-12 5V 至-5V 转换器的典型应用电路