基于AVR单片机的便携式无线医疗点滴监控系统

发布者:安静的夜晚最新更新时间:2020-01-30 来源: elecfans关键字:AVR单片机  便携式无线  医疗点滴监控系统 手机看文章 扫描二维码
随时随地手机看文章

  引言

  智能化和便携式是现代电子产品的发展趋势,医疗电子的智能化使得医务人员的操作变得更方便。医务人员可随身携带手持式监控仪对各病房点滴实时监控,及时了解相关情况;如遇突发情况如点滴低于设定警戒值,终端监控装置可产生中断信号,主控制端则可优先进行相应的处理。本设计实现了一种以AT32UC3A0512[1]单片机为主控制器的便携式远程无线点滴监控系统,可及时了解点滴状态,提高医疗点滴设备安全性。


  1 系统原理介绍

  本系统主要包括两个部分:手持式控制端和终端监控装置。手持式控制端主要实现信息输入和查询界面的操作,通过输入待查询的病房号及点滴速度值,以数据包形式发送给相应的病房监控终端,实时显示终端传送来的点滴状态数据信息。终端监控装置主要负责点滴状态的数据采集和处理(点滴流速与点滴液位等),以及将处理好的数据通过无线通信方式发送给主控制端;对于点滴液位低于设定值、病人呼叫等紧急事件,按照中断模式处理,发出报警提示,并将事件类型以数据包形式发送至主控制端。系统的结构框图如图1所示。

  便携医疗

  图1 系统结构框图


  2 系统硬件设计

  2.1 控制端部分硬件设计

  手持式控制端采用Atmel公司的32位RISC处理器AT32UC3A0512为主控制器[1]。它的功耗低,吞吐量高,内部具有512K Flash和64K的SRAM,CPU工作频率最高可达66 MHz;在3.3 V电压下,工作电流约40 mA,待机电流则仅为30 μA。内部高度集成的硬件资源可简化外围电路的设计,如内部Flash、USB、ADC、EBI和以太网等外设接口可供设计者使用。


  2.1.1 触摸按键模块

  采用Quantum Research Group公司的电容式触摸按键模块IC QT1801,[2]具有功耗低,外围电路简单,可同时支持8个触摸按键输入等特点。经过内部滤波整形后,在对应的按键口输出逻辑电平,根据外围电阻值的不同选择可以设置IC QT1801的各种模式。  工作模式的设置如下:在全模式(Full OpTIon Mode)下,需在引脚SNSx(x=0,1,…,7)接1 MΩ电阻;在精简模式下,需在引脚SNS6K和SNS7之间串接一个1 MΩ电阻。按键输出值模式有2种:Oneperkey和Binary Code。当有按键触摸时在24引脚(DETECT)产生触摸中断信号,高电平有效。其中,CS1~CS5为触摸按键输入,其接口电路如图2所示。

  触摸按键

  图2 触摸按键模块电路图


  2.1.2 LCD显示模块

  显示部分采用EDT公司的LCD显示模块ET024006DHU,该LCD模块内部集成了图形控制驱动器HX8347A,MCU可通过两种接口方式对其内部寄存器进行读/写操作来控制LCD的显示,分别是并行接口模式和SPI接口模式。并行接口模式下可选择8/16位数据和16/18位RGB数据,串行SPI接口模式下可将8/16位数据和16/18位RGB数据直接写入内部寄存器。


  2.1.3 无线通信模块nRF24L01[3]

  无线通信部分采用单片射频收发芯片,其工作频段为世界通用的ISM频段(2.4~2.5 GHz),是一款真正的GFSK单收发芯片。内置链路层,具有自动应答及自动重发功能,支持地址及CRC检验功能。它具有极低的电流消耗,掉电和待机模式下电流消耗更低;数据传输速率最高可达2 Mbps,内置标准的SPI接口可与MCU进行数据传输,速率最高可达8 Mbps;可工作在125个可选频道,在接收模式下,可同时接收工作在同一频道的6个数据通道的数据,相互通信的收发器的数据通道设置为同一个地址。


  通过对nRF24L01内部寄存器的读/写来控制其工作状态的转换及数据的收发,当收发器数据接收/发送完成或者出现异常时,IRQ引脚产生中断信号,低电平有效,对STATUS寄存器相应位写“1”,清除中断标志。无线通信模块硬件连接如图3所示。


  2.2 终端监控装置硬件设计

  终端监控装置采用ATmega128单片机,主要接收控制端发送的命令数据,并将采集的数据进行处理发送给控制端,完成病人呼叫、液面监测、对点滴速度的检测与控制,以及声音报警等功能。


  2.2.1 点滴速度控制模块

  点滴速度控制电路采用专用的步进电机控制芯片L297、双全桥步进电机驱动芯片L298。L297内部的PWM斩波器电路在开关模式下可产生PWM波,控制电机绕组中的电流,从而控制电机的精确转动;它产生的4相控制信号可用于控制两相双极性和四相单极性步进电机。L298内含HBridge高电压、大电流双全桥式驱动器,4路驱动电路可驱动46 V、2 A以下的两相或四相步进电机,可实现步进电机的正反转。通过精确控制电机的正反转来控制点滴装置的流速夹滚轴的滑动,以达到控制点滴滴落速度的目的。硬件连接图如图4所示。

  无线模块

  图3 无线模块硬件图

  速度控制

  图4 点滴速度控制电路图


  2.2.2 点滴速度和液位检测模块

  利用红外对管发射方法测量点滴速度。点滴检测电路包括红外发射、接收、脉冲整形3部分,硬件原理图如图5所示。ST1150是单光速直射式红外光电传感器,光缝宽度为1.5 mm,光轴中心为2.5 mm,红外检测面积较小。当无液滴通过时,接收管(ST1150内部的三极管)导通,Vin为低电平;当有液滴通过时,接收管截止,Vin处产生高电平脉冲,经过斯密特触发器整形后在Vout处产生一串规则的方波脉冲,并送至ATmega128进行处理。

  速度检测

  图5 点滴速度检测电路


  液位检测则采用反射式红外传感器,电路检测原理电路和点滴速度检测电路类似。ST198是采用高发射功率红外光电二极管和高灵敏度光电晶体管组成的反射式光电传感器,采用非接触检测方式,检测距离为2~10 mm时可用。当液位低于设定值时,接收管接收到的是电平信号,经过反相器倒相后送至单片机,触发中断。当红外对射管为ST1150时用于点滴速度检测,为ST198时用于液位检测。


  3 系统软件结构

  (1) 数据帧结构

  定义一个通信数据帧结构来管理控制端与设备间的通信,通过对数据帧的解析,主/从设备可以高效率地完成数据处理。按照通信传输的先后顺序,数据帧的格式为:命令(1字节)+设备ID(1字节)+事件类型(1字节)+数据域长度(1字节)+数据域(n字节)+校验和(2字节)。


  (2) μC/OSII的移植

  μC/OSII是一种开源、结构可裁剪的可剥夺实时内核的RTOS,其大部分代码都是C语言,可移植性较强,已在多种系列的CPU上进行了移植。AVR Studio 5内部集成了Software Framework软件包,包含Atmel MCU接口驱动函数,在AVR Studio 5环境下,移植μC/OSII到AT32UC3A0512 MCU上,需要在Micrium官方移植实例中进行以下修改:

  ① 修改excepTIon.S文件中的内容,修改如下:

  _handle_Supervisor_Call:

  lddpcpc,__OSCtxSw

  __OSCtxSw:。

  longOSCtxSw

  ② 修改cpu.h内容如下:

  #define CPU_CRITICAL_ENTER()

  {cpu_sr = CPU_SR_Save();}

  #define CPU_CRITICAL_EXIT()

  {CPU_SR_Restore(cpu_sr);}

  #define CPU_SR_Save()cpu_irq_save()

  #define CPU_SR_Restore(cpu_sr)

  cpu_irq_restore(cpu_sr)

  #define CPU_IntDis()Enable_global_interrupt()

  #define CPU_IntEn()Disable_global_interrupt()

  #define CPU_ExceptDis()Disable_global_exception()

  #define CPU_ExceptEn()Enable_global_exception()

  #define CPU_Reset()Reset_CPU()

  主控制端软件结构

  图6 主控制端的软件结构图


  (3) 控制器部分软件设计

  在μC/OSII系统下的软件结构如图6所示。

  主控制端主要通过LCD界面来完成用户的操作,5个触摸键为界面操作按键,数字键盘用软件实现。通过数字键盘输入要查询的病房号,确认后即可查询到该病房中点滴的速度、余量等状态。

  界面菜单的切换关系通过定义一个结构体来实现,结构体定义为:

  typedef struct MenuItem{

  U8 MenuNum;//当层菜单项目数

  U8 *DispStr; //显示字符串

  struct MenuItem *ChildrenMenus;//子菜单节点

  struct MenuItem *ParentMenus; //父菜单节点

  } Menu;

  (4) 终端监控部分软件设计

  终端接收到控制端发来的命令数据包,解析出命令,实施相应的处理,并将数据处理后打包发送给控制端。终端控制部分的软件流程如图7所示。

  终端主程序

  图7 终端主程序


  结语

  基于AVR32MCU和μC/OSII的嵌入式系统,利用无线通信方式实现远程在线监控,无线网络的组建增强了系统的可移动性。本文提出的一种基于AVR32的便携式点滴监控系统的设计,将医疗点滴监控装置小型化,近距离范围内系统稳定。由于资源有限,关于远距离控制的网络组建还在进一步探索。

关键字:AVR单片机  便携式无线  医疗点滴监控系统 引用地址:基于AVR单片机的便携式无线医疗点滴监控系统

上一篇:单片机ATmega8读取165串入拨码开关地址的程序分享
下一篇:解决AVR单片机烧写过程中弄错熔丝位而造成无法读写的问题

推荐阅读最新更新时间:2024-10-09 23:04

标准AVR单片机模拟I2C总线的主机程序
.H文件预处理 typedef unsigned char INT8U; //0~255 typedef signed char INT8S; //-128~127 typedef unsigned int INT16U; //0~65535 typedef signed int INT16S; //-32768~32767 typedef unsigned long INT32U; //0~0xFFFFFFFF typedef signed long INT32S; //0x8000 0000~7FFFFFFF typedef float FP32; //Single precision floati
[单片机]
标准<font color='red'>AVR单片机</font>模拟I2C总线的主机程序
基于ATT7022A和AVR单片机的无功补偿控制器设计
以三相电能专用计量芯片ATT7022A和一种高性能低功耗的AVR单片机atmega128为核心,设计一种无功补偿控制器。该控制器能实时测量电网的电流电压值、有功功率、无功功率、功率因数等参数,根据实际情况,准确的控制电容器的投切,能有效的提高线路功率因数、较少损耗,改善电网质量。 在工业和生活用电负载中,阻感负载占有很大的比例。异步电动机、变压器、荧光灯等都是典型的阻感负载。异步电动机和变压器所消耗的无功功率在电力系统所提供的无功功率中占有很高的比例。电力系统中的电抗器和架空线等也消耗一些无功功率。阻感负载必须吸收无功功率才能正常工作,这是由其本身的工作性质决定的。最合理的方法就是在这些感性设备附近及线路适当位置并联电容器
[单片机]
基于ATT7022A和<font color='red'>AVR单片机</font>的无功补偿控制器设计
基于AVR单片机中的EEPROM和FLASH的区别及使用方法解析
1.EEPROM介绍 Electrically Erasable Programmable Read Only Memory电气可拭除可编程只读存储器 发展过程:ROM – 》 PROM –》 EPROM –》 EEPROM 2.EEPROM和FLASH的区别 2.1 使用上的区别 FLASH用于存放程序,在程序运行过程中不能更改。我们编写的程序是烧录到FLASH中的; RAM用作程序运行时的数据存储器; EEPROM用于存放数据,是用来保存掉电后用户不希望丢的数据,开机时用到的参数。运行过程中可以改变。 FLASH是用于存储程序代码的,有些场合也可能用它来保存数据,当然前提是该单片机的FLASH工艺是可以自写的(运行中可
[单片机]
基于<font color='red'>AVR单片机</font>中的EEPROM和FLASH的区别及使用方法解析
基于AVR单片机与CH375的多通道核辐射探测数据采集系统
该系统采用了AVR单片机、高速器件及USB接口技术,采集速度快,死时间短,计数率高,通信量大。USB所具有的即插即用、通用性强、易扩展、可靠性高等优点改善了各探测通道的使用性能。它不仅是4MeV静电加速器不可缺少的重要组成部分,而且为加速器防辐射安全提供确切依据,同时还为加速器在动植物育种、放射治疗、材料改性、放射化学等诸多方面的应用研究提供可靠的技术数据。整个系统已通过省级科技成果鉴定,实际运行良好。在更换探头和稍作参数调整后,还可将该系统用于其它大范围场地多种辐射的监测。 0 引言 文中介绍了多个探测通道组成的多道核数据采集系统,对4MeV静电加速器核辐射进行监测防护。各个通道采用AVR单片机ATmega128作为主控
[单片机]
基于<font color='red'>AVR单片机</font>与CH375的多通道核辐射探测数据采集系统
AVR单片机定时器的5种工作类型
分5种工作类型 一 普通模式 WGM1=0跟51的普通模式差不多,有TOV1溢出中断标志,发生于MAX(0xFFFF)时 1、采用内部计数时钟用于 ICP捕捉输入场合——-测量脉宽/红外解码(捕捉输入功能可以工作在多种模式下,而不单单只是普通模式) 2、采用外部计数脉冲输入 用于 计数,测频其他的应用,采用其他模式更为方便,不需要像51般费神 二 CTC模式 [比较匹配时清零定时器模式] WGM1=4,12跟51的自动重载模式差不多 1、用于输出50%占空比的方波信号 2、用于产生准确的连续定时信号WGM1=4时, 最大值由OCR1A设定,TOP时产生OCF1A比较匹配中断标志WGM1=12时,最大值由ICF
[单片机]
<font color='red'>AVR单片机</font>定时器的5种工作类型
基于AVR单片机和DS18B20的多点温度测量系统
1DS18B20和BASCOM-AVR简介   DS18B20是美国DALLAS公司生产的单总线数字温度传感器,从DS18B20读出或写入的信息仅需要一根口线。在单总线工作方式下,允许一条信号线上挂接多个DS18B20,特别适合于构成远距离多点温度测控系统,从而大大简化了系统布线,提高了可靠性,降低了成本,而实现这些的关键在于每片DS18B20都有唯一的ROM代码(64位产品序列号)。在多点温度测控系统中,ROM代码是识别和操作DS18B20的基础;无论读取还是选择对某一个传感器进行操作,主机必须发送64位ROM代码。   BASCOM-AVR是MSC Electronics公司推出的基于AVR系统的软件开发仿真平台。程序语
[单片机]
基于<font color='red'>AVR单片机</font>和DS18B20的多点温度测量系统
AVR单片机硬件线路的设计步骤及方法
基本的AVR硬件线路,包括以下几部分: 1、复位线路 2、晶振线路 3、AD转换滤波线路 4、ISP下载接口 5、JTAG仿真接口 6、电源 下面以本网站推荐的AVR入门芯片ATmega16L-8AI 分析上述基本线路。(-8AI表示8M频率的TQFP贴片封装,工业级,更详细的型号含义资料,请参考:AVR芯片入门知识) 复位线路的设计 Mega16已经内置了上电复位设计。并且在熔丝位里,可以控制复位时的额外时间,故AVR外部的复位线路在上电时,可以设计得很简单:直接拉一只10K的电阻到VCC即可(R0)。 为了可靠,再加上一只0.1uF的电容(C0)以消除干扰、杂波。 D3(1N4148)的作用有两个:作用一是将复
[单片机]
<font color='red'>AVR单片机</font>硬件线路的设计步骤及方法
基于AVR的锂电池智能充电器的设计与实现
   1 引言   锂电池闲其比能量高、自放电小等优点,成为便携式电子设备的理想电源。近年来,随着笔记本电脑、PDA,无绳电话等大功耗大容量便携式电子产品的普及,其对电源系统的要求也日益提高。为此,研发性能稳定、安全可靠、高效经济的锂电池充电器显得尤为重要。   本文在综合考虑电池安全充电的成本、设计散率及重要性的基础上,设计了一种基于ATtiny261单片机PWM控制的单片开关电源式锂电池充电器,有效地克服了一般充电器过充电、充电不足、效率低的缺点,实现了对锂电池组的智能充电,达到了预期效果。该方案设计灵活,可满足多种型号的锂电池充电需求,且ATtiny261集成化的闪存使其便于软件调试与升级。    2 锂电池充电特性
[电源管理]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved