第001节硬件知识_UART硬件介绍
1.串口的硬件介绍
UART的全称是Universal Asynchronous Receiver and Transmitter,即异步发送和接收。
串口在嵌入式中用途非常的广泛,主要的用途有:
打印调试信息;
外接各种模块:GPS、蓝牙;
串口因为结构简单、稳定可靠,广受欢迎。
通过三根线即可,发送、接收、地线。
通过TxD->RxD把ARM开发板要发送的信息发送给PC机。
通过RxD->TxD线把PC机要发送的信息发送给ARM开发板。
最下面的地线统一参考地。
2.串口的参数
波特率:一般选波特率都会有9600,19200,115200等选项。其实意思就是每秒传输这么多个比特位数(bit)。
起始位:先发出一个逻辑”0”的信号,表示传输数据的开始。
数据位:可以是5~8位逻辑”0”或”1”。如ASCII码(7位),扩展BCD码(8位)。小端传输。
校验位:数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验数据传送的正确性。
停止位:它是一个字符数据的结束标志。
怎么发送一字节数据,比如‘A‘?
A 的ASCII值是0x41,二进制就是01000001,怎样把这8位数据发送给PC机呢?
双方约定好波特率(每一位占据的时间);
规定传输协议
a. 原来是高电平,ARM拉低电平,保持1bit时间;
b. PC在低电平开始处计时;
c. ARM根据数据依次驱动TxD的电平,同时PC依次读取RxD引脚电平,获得数据;
前面图中提及到了逻辑电平,也就是说代表信号1的引脚电平是人为规定的。
如图是TTL/CMOS逻辑电平下,传输‘A’时的波形:
在xV至5V之间,就认为是逻辑1,在0V至yV之间就为逻辑0。
如图是RS-232逻辑电平下,传输‘A’时的波形:
在-12V至-3V之间,就认为是逻辑1,在+3V至+12V之间就为逻辑0。
RS-232的电平比TTL/CMOS高,能传输更远的距离,在工业上用得比较多。
市面上大多数ARM芯片都不止一个串口,一般使用串口0来调试,其它串口来外接模块。
ARM芯片上得串口都是TTL电平的,通过板子上或者外接的电平转换芯片,转成RS232接口,连接到电脑的RS232串口上,实现两者的数据传输。
现在的电脑越来越少有RS232串口的接口,当然USB是几乎都有的。因此使用USB串口芯片将ARM芯片上的TTL电平转换成USB串口协议,即可通过USB与电脑数据传输。
上面的两种方式,对ARM芯片的编程操作都是一样的。
ARM芯片是如何发送/接收数据?
如图所示串口结构图:
要发送数据时,CPU控制内存要发送的数据通过FIFO传给UART单位,UART里面的移位器,依次将数据发送出去,在发送完成后产生中断提醒CPU传输完成。
接收数据时,获取接收引脚的电平,逐位放进接收移位器,再放入FIFO,写入内存。在接收完成后产生中断提醒CPU传输完成。
第002节_S3C2440_UART编程
在uart.c这个文件里需要编写这样几个函数:
uart0_init() 用于初始化串口
putchar() 用于发送一个字符
getchar() 用于接收一个字符
puts() 用于发送一串字符
在uart0_init()需要做如下几件事:
1.设置引脚用于串口:根据原理图和参考手册设置GPH2,3用于TxD0, RxD0,并且为了将其保持为高电平,先设置其为上拉;
GPHCON &= ~((3<<4) | (3<<6));
GPHCON |= ((2<<4) | (2<<6));
GPHUP &= ~((1<<2) | (1<<3)); /* 使能内部上拉 */
2.设置波特率
将uart 的时钟设置为PCLK,中断/查询模式:
UCON0 = 0x00000005; /* PCLK,中断/查询模式 */
uart clock=50M,波特率假设是115200,
根据公式UBRDIVn = (int)( UART clock / ( buad rate x 16) ) –1
得到UBRDIVn = (int)( 50000000 / ( 115200 x 16) ) –1 = 26
UBRDIV0 = 26;
3.设置数据格式
数据格式设置为常用的8n1:8个数据位, 无较验位, 1个停止位
ULCON0 = 0x00000003; /* 8n1: 8个数据位, 无较验位, 1个停止位 */
读取UTRSTAT0寄存器,查询其第2位判断发送buff是否为空,即上一次发送是否完成,如果完成即向UTXH0写入要发送的新数据;查询其第0位判断接收buff是否为空,即本次接收是否完成,如果接收完成,读取URXH0的值。
int putchar(int c)
{
/* UTRSTAT0 */
/* UTXH0 */
while (!(UTRSTAT0 & (1<<2)));
UTXH0 = (unsigned char)c;
}
int getchar(void)
{
while (!(UTRSTAT0 & (1<<0)));
return URXH0;
}
循环输出字符,就可以实现字符串的输出
int getchar(void)
{
while (!(UTRSTAT0 & (1<<0)));
return URXH0;
}
int puts(const char *s)
{
while (*s)
{
putchar(*s);
s++;
}
}
在main.c的主函数里,先调用初始化函数,然后循环获取用于输入的数据,然后回显出来。并且在收到r回车时,输出n换行,有些时候n是回车,则输出r换行。
#include "s3c2440_soc.h"
#include "uart.h"
int main(void)
{
unsigned char c;
uart0_init();
puts("Hello, world!nr");
while(1)
{
c = getchar();
if (c == 'r')
{
putchar('n');
}
if (c == 'n')
{
putchar('r');
}
putchar(c);
}
return 0;
}
上一篇:第010课 掌握Jz2440_ARM芯片时钟体系
下一篇:第012课 内存控制器与SDRAM
推荐阅读最新更新时间:2024-11-17 02:44
设计资源 培训 开发板 精华推荐
- 用于可调限流选项的 ADP1614 升压稳压器配置的典型应用电路
- MCIMX51EVKJ: i.MX51评估套件
- AS1130-WL_DK_ST,基于用于 132 个单 LED 的 AS1130 LED 驱动器的演示套件
- 使用 ROHM Semiconductor 的 BD48K23G-TL 的参考设计
- 用于处理器电源管理的 19.6W 交流转直流单输出电源
- LT1086CT-3.6 用于改善纹波抑制的低压差正稳压器的典型应用
- 【RA】瑞萨mcu声光控制器
- DER-857 - 65W 高功率因数、隔离式反激式开关式谷填充 PFC LED 驱动器,采用采用 PowiGaN 技术的 LYTSwitch-6
- 使用 Infineon Technologies AG 的 OM8504SF 的参考设计
- 锡膏推进器