AVR单片机实现轮胎内径测量系统的设计

发布者:polkmm最新更新时间:2020-04-02 来源: elecfans关键字:AVR单片机  轮胎内径  测量系统 手机看文章 扫描二维码
随时随地手机看文章

轮胎模具用于成型轮胎,其加工质量对轮胎的生产非常重要。为了生产出好的轮胎,必须对轮胎模具加工质量提出高的要求。传统的加工质量检测法主要是靠百分表,人为采集数据后分析得出加工质量报告。这种办法的局限性是需要操作者有一定的工作经验,而且取样过程人为控制,精度受到一定影响。近几年来,轮胎模具工业随着轮胎的大量需求而得到了快速发展,传统的检测方法不能满足市场需求。光栅尺是一种数字位移测量设备,测量范围可达几十米,测量精确在微米级;激光测距仪是一种非接触测量设备,可以对不规则表面的目标位移进行测量,但是测量距离较小。将大范同的光栅尺和非接触测量的激光测距仪结合起来就可以实现对不规则面的目标距离进行测量。将光栅尺读头与激光测距仪固定在机械横梁上,运用步进电机控制横梁的运动,分别对模具不同层面的内径进行测量。


系统采用AVR单片机实现控制步进电机和光栅尺数据读取,通过接收上位机的控制命令,AVR单片机控制步进电机运动,数显表数据和激光控制器位移数据自动经串口发送给上位机,从而完成对模具内径的自动测量。


1 系统组成

基于AVR的轮胎内径测量系统主要由AVR单片机、上位机、光栅尺、数显表、激光测距仪、驱动器、步进电机、电子手轮行程开关等组成。其功能框图如图1所示。

AVR单片机实现轮胎内径测量系统的设计

单片机选用的是爱特梅尔公司的ATmega16;上位机采用研华公司生产的ARK3360L工控机,它拥有多个RS232接口;激光测距仪采用的是日本基恩士公司的LK-G85激光测距传感器和LK-G3001V激光测距控制器,其分辨率为0.1μm,测量范围-15~+15 mm,测量距离为80 mm;光栅尺采用广州诺信数字测控设备有限公司的KA300型系列光栅位移测量设备,读数由其公司的SDS6型数显表实现。最终的内径计算由上位机接收到激光测距仪数据和光栅尺数据后完成。


2 系统功能分析

2.1 模具内径测量方法

轮胎模具置于静止的工作平台之上,旋转测量平台处于工作平台的中心位置,在旋转测量平台上的横梁和立柱可以沿径向和垂直两个方向移动,激光感测头置于测量横粱上。根据轮胎模具的内径不同,沿径向移动测量横梁,将激光感测头移动至测量范围内,即可测得激光感测头至轮胎模具内圆的距离,再通过利用光栅尺测量横梁径向移动的距离,换算出轮胎模具的内径。通过控制电机旋转测量平台,就可以按照节距逐一测量轮胎模具内径,从而得到轮胎模具的圆度。将测量横梁沿立柱垂直移动,就可以测量轮胎模具不同垂向高度的内径,从而得到模具的圆锥度。


测量系统一共有3个步进电机控制测量设备沿3方向运动;两把光栅尺读取水平和垂直位移数据,还有激光测距仪实现非接触位移测量,其测量结构如图2所示。

AVR单片机实现轮胎内径测量系统的设计

2.2 测量原理和功能实现

轮胎模具花纹块剖面如图3所示:花纹块最上边的是模具胎口,其加工的误差一般较小,选取作为基准。设胎口离花纹块中心线X1的距离为RT,把这个内圈设定为基准圈。轮胎模具内径测量是基于模具胎口半径RT已知的前提下,由程序控制整个测量过程。

AVR单片机实现轮胎内径测量系统的设计

在保证待测模具的平面度和同心度状态下,调整转动电机和垂直位移电机,使得激光感测头位于被测点上方的已知胎口直径位置。调整水平位移电机,使得激光感测头与胎口被测点的水平距离为80±0.5 mm,激光传感器在这个距离下测量精度最高。


根据胎口半径RT和胎口被测点的激光测距值、水平光栅尺读数,可以得到如下等式:

其中,XL是激光测距值,XR是水平光栅尺读数,这两个值可以多次测量取平均,XS是系统装配和放置待测模具时的固有值,即如图设备中心X0离花纹圈中心X1的距离,相对于垂直方向的每个被测点而言,XS在整个测量过程中是不变的,因此可以得到下式:

当测量臂垂直移动至待测模具被测点的垂直位置后,平移激光感测头至距离被测点80±0.5 mm处,然后读取被测点的激光测距值XL’和水平光栅尺读数XR’,则被测点的半径满足:

AVR单片机实现轮胎内径测量系统的设计

只要按照上述方法逐点测量和计算出各个被测点的直径,就可以完成圆度测量了。

在整个测量过程中,由于要避开模具的花纹,因而对测量点有一定的要求。使用ATmega16精确控制步进电机运行可以找到待测点,并在此基础上加入手轮控制器微调步进电机找到合适位置后再采集数据,这样就可以对人为设定的测量点进行测量。


2.3 设备的行程控制

在测量设备水平和垂直移动极限位置处放置行程开关来保证运行安全,为了降低成本,通过测量转盘的所有信号没有采用电滑环而使用电缆直接连接。因此设备在旋转时不能总是沿一个方向旋转,否则会扭断电缆。本设计中旋转角度不超过360°,为了区分旋转的0°和36 0°,在测量转盘指定的位置处分别放置两个并排的行程开关。通过判断这两个行程开关动作的先后次序来确定旋转的位置,然后决定可旋转的方向。


3单片机设计

主要思路:上位机对电机进行测量步骤的控制,通过发送命令使步进电机沿设计思路正确测量数据。而在某些测量点上,需要人工干预时通过转动手轮即可微调电机。而行程开关可以限制机械转动的位置,也可以用于复位设置。


3.1 步进电机的驱动

步进电机的运行要有步进电机驱动器,把控制系统发出的脉冲信号转化为步进电机的角位移。步进电机的转速与脉冲信号频率成正比,步进角度与脉冲数目成正比。步进电机启动时,必须有升速、降速过程,升降速的设计至关重要。如果设计不合适,将引起步进电机的堵转、失步、升降速过程慢等问题。为了实现升降速,用阶梯型频率变化来模拟频率线性变化过程。如图4所示。

AVR单片机实现轮胎内径测量系统的设计

步进电机脉冲的产生由定时器1和定时器2实现,ATmega16控制器接收到上位机的命令后,首先获取需要转动的步数,然后根据相应命令打开相应定时器的计数功能。控制程序中用定时器1控制二路脉冲输出,定时器2控制一路脉冲输出,从而完成3路电机的控制。


定时器2使用CTC模式,匹配中断使能。通过匹配中断,在OCR2端口可以输出脉冲,通过设定寄存器OCR2寄存器的值可以改变输山脉冲频率。定时器1使用相位与频率修正模式,在不同串口命令下分别设置ICR1、OCR1A和OCR1B寄存器的值并打开不同的匹配中断,从而可以分别在OC1A和OC1B端口输出匹配脉冲。其输出频率控制和定时器2原理一样,只是还需要改变计数上限值ICR1。由于3路电机不同时运动,因此每次只有一个定时器处于打开状态,其余则需要关闭。


在程序运行中,设置了一个全局变量保存电机运行的步数。在收到上位机的命令后,控制程序首先将该步数写入片内EEPROM中再执行。由于EEPROM数据掉电不丢失,因此系统掉电后复位时可以从EEPROM中取出数据然后执行下一次操作。


3.2 手轮微调控制

手轮的作用主要是实现微调设备找到合适的测量点。电子手轮一共有两路脉冲输出,两路脉冲相位差决定了手轮的旋转方向。手轮的控制采用定时器0,使用计数模式。定时器0没置为CTC模式,上升沿触发,OCR0为1,计数初始值为0,中断使能。当外部上升沿触发时计数到1时触发中断,在中断子程序里面根据手轮状态产生相应的脉冲输出。


在手轮中断子程序中,首先将计数器自动清零等待下一个手轮脉冲。然后判断正反信号和手轮档位状态,ATmega16根据状态信息通过延时方法产生一定数量的脉冲控制步进电机。手轮状态共有Z、Y、X 3个方向,X1、X10、X100 3个档位。若手轮在X档位则在相应端口(该端口同时也是定时器脉冲输出口)输出一定数目的脉冲。改变延时的大小可以改变输出频率,但是由于延时输出脉冲的最大频率决定于晶振,因此输出脉冲受到一定影响。延迟方法产生的脉冲不能精确控制步进电机的步进角度,但是可以用于微调。


手轮的正反信号通过D触发器来判断。将手轮脉冲A作为CLK信号,脉冲B为CP信号,复位端和置位端接高电平。当手轮正转时脉冲A脉冲与脉冲B的相位差为正90度,D触发器输出高电平;若反转A脉冲与B脉冲的相位差为负90度,输出低电平。


3.3 串口模块

上位机和单片机主要采用UART异步通信,收发按字节处理。单片机接收上位机命令时采用UART查询方法实现数据接收。其通信格式为:起始字+控制字节+步数+结束字,数据使用国际通用标准ASCII码格式,如表1所示。

AVR单片机实现轮胎内径测量系统的设计

设计过程中使用ICCAVR编译器编写单片机控制程序,可以使用atoi函数将ASCII码格式步数转化为整型数据。

关键字:AVR单片机  轮胎内径  测量系统 引用地址:AVR单片机实现轮胎内径测量系统的设计

上一篇:如何解决AVR单片机熔丝位锁死的问题
下一篇:如何自制一个AVR单片机ISP下载线

推荐阅读最新更新时间:2024-11-08 11:47

AVR单片机TC0快速PWM
PWM:脉冲宽度调制,图中T为脉冲周期,t为高电平时间,t与T的比值t/T称为占空比,脉宽调制指的是调整t的大小,即改变脉冲的占空比,占空比值越大,输出的电压越高。改变占空比就改变输出的电压,常用于实现D/A,调节电压或电流,改变电动机的转速等。 快速PWM模式:它的计数方式是TCNT0由0开始计数到255式,计数加1返回到0,然后继续加1计数,相对于相位PWM修正模式(由0计数到255,再从255计数到0),只有一个斜坡,因此PWM输出频率高。在快速PWM模式下,计数器的最大值决定了PWM的频率,而比较寄存器OCR0决定了占空比的大小。T/C0是8位计数器, 输出PWM的频率=系统时钟频率/(分频系数*255) 。 PW
[单片机]
<font color='red'>AVR单片机</font>TC0快速PWM
数字温度传感器TC77与AVR单片机的接口设计
1 概述 TC77是Microchip公司生产的一款13位串行接口输出的集成数字温度传感器,其温度数据由热传感单元转换得来。TC77内部含有一个13位ADC,温度分辨率为0.062 5℃/LSB。在正常工作条件下,静态电流为250μA(典型值)。其他设备与TC77的通信由SPI串行总线或Microwire兼容接口实现,该总线可用于连接多个TC77,实现多区域温度监控,配置寄存器CONFIG中的SHDN位激活低功耗关断模式,此时电流消耗仅为0.1μA(典型值)。TC77具有体积小巧、低装配成本和易于操作的特点,是系统热管理的理想选择。 2 TC77的内部结构及引脚功能 图1所示为TC77的内部结构原理图。TC77由CMOS结型
[应用]
AVR单片机串口红外线传输试验程序
为了验证串口红外传输速度,我搭建了这个小系统。 问题从红外线接收头开始,我使用现成的红外遥控接收头,这就省去了搭建放大整形等等麻烦,但限制也就此产生,后述。红外头内部有40KHZ的选通,所以数字信号必须搭载在40KHZ上。 用74LS00作40KHZ方波发生器,使用如图阻容,产生的方波大致在需求范围。 先想用40KHZ晶振,拆了两个遥控器,445KHZ,不能用,所以还是阻容法,这个50000P是我反复调整的结果。 选用74LS00主要看上它有与门,我们用10脚、9脚入,8脚出这个与非门,把数字信号和载波信号“与”在一起。 遥控接收的要求是,无信号就无载波,串口输出等待状态为高电平,所以用与非门反向一下,13、12脚入,11脚出即是
[单片机]
<font color='red'>AVR单片机</font>串口红外线传输试验程序
智能测量系统中的海量数据存储技术
摘要:介绍了智能仪器中海量数据的存储方法,并设计了一种海量数据存储模块。该模块采用Compact Flash电子盘实现了大量数据的存储,并通过串口通信与各种现场智能设备和工控系统进行数据交换。最后将其应用于智能测产系统中,并进行了现场实验。实验结果表明,该模块具有很高的可靠性,满足了使用要求。 关键词:海量数据存储 电子盘 精准农业 智能测产 在一些智能仪器中,经常需要进行大量的数据采集和存储操作。例如,在精准农业作业中需要采集田地中每一个采样点的经度、纬度、产量和湿度等信息。采样点有成千上万个,产生了大量的数据,保证这些现场数据的可靠存储是测控系统设计中的关键问题之一。对基于PC机的智能仪器,这些数据可直接以DOS或Win
[缓冲存储]
AVR单片机教程——烧写HEX文件
每一次build项目,编译器都会生成多个文件,其中有一个就是hex文件。之前在IDE中配置的external tools,就是把这个hex文件烧写到单片机中去的。 然而,有些时候你想运行别人的程序,但拿不到别人的源码,只能拿到一个hex文件。比如,我现在就把明天作业的答案(没错,明天有作业)以hex文件的形式(平台不让上传hex文件,所以我就打了个包,使用前请先解压)给你,让你抢先体验一下。这时,你就需要用AVRDUDESS来烧写hex文件。 初次打开AVRDUDESS,界面上所有选项都是默认的。 在左上角下拉框中选择USBasp(在最后的位置)。 点击右上角Detect,会自动选择好单片机型号。 在Flash
[单片机]
<font color='red'>AVR单片机</font>教程——烧写HEX文件
东芝LB1847 步进电机驱动芯片pdf资料与AVR单片机源程序
ATMEGA16A使用东芝LB1847芯片驱动步进电机 东芝LB1847引脚图: LB1847典型应用电路图 ton : Output ON time toff : Output OFF time tm : FAST DECAY time in MIX DECAY mode tn : Noise cancelling time MIX DECAY logic setting DECAY pin : L MD pin : 1.5V to 4.0V voltage setting CR voltage and MD pin voltage are compared to select
[单片机]
东芝LB1847 步进电机驱动芯片pdf资料与<font color='red'>AVR单片机</font>源程序
基于微控器的植株杆径变差测量系统设计
  从植物生理角度讲,植物器官(茎、叶、果实等)体积的微变化动态与其体内的水分状况有关,当根系吸水充足时茎杆微膨胀,水分亏缺时茎杆微收缩。国外已有用茎杆直径的变化反映植株体内的水分和缺水状况的仪表。但其成本较高,为此本项研究主要研制基于 微控器 的植物茎杆变差测的测定系统。植株茎杆的直径是在微米级变化的,因而必须用精密的测量仪器才能测出其变化。    电感测微仪 是一种广泛应用于精密机械制造业、晶体管和集成电路制造业以及国防、科研、计量部门的能够测量微小尺寸变化的精密测量仪器,它由主体和测头两部分组成,配上相应的测量装置(例如测量台架等),能够完成各种精密测量。因此,配以合适的台架它也可以完成对植株杆径的测量。在通过微控器对测
[测试测量]
基于微控器的植株杆径变差<font color='red'>测量系统</font>设计
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved