【STM32】RTC实时时钟,步骤超细详解,一文看懂RTC

发布者:火星叔叔最新更新时间:2020-08-24 来源: eefocus关键字:STM32  RTC  实时时钟 手机看文章 扫描二维码
随时随地手机看文章

什么是RTC

RTC (Real Time Clock):实时时钟

RTC是个独立的定时器。RTC模块拥有一个连续计数的计数器,在相应的软件配置下,可以提供时钟日历的功能。修改计数器的值可以重新设置当前时间和日期 RTC还包含用于管理低功耗模式的自动唤醒单元。

在这里插入图片描述

在断电情况下 RTC仍可以独立运行 只要芯片的备用电源一直供电,RTC上的时间会一直走。

RTC实质是一个掉电后还继续运行的定时器,从定时器的角度来看,相对于通用定时器TIM外设,它的功能十分简单,只有计时功能(也可以触发中断)。但其高级指出也就在于掉电之后还可以正常运行。


两个 32 位寄存器包含二进码十进数格式 (BCD) 的秒、分钟、小时( 12 或 24 小时制)、星期几、日期、月份和年份。此外,还可提供二进制格式的亚秒值。系统可以自动将月份的天数补偿为 28、29(闰年)、30 和 31 天。


上电复位后,所有RTC寄存器都会受到保护,以防止可能的非正常写访问。

无论器件状态如何(运行模式、低功耗模式或处于复位状态),只要电源电压保持在工作范围内,RTC使不会停止工作。


RCT特征:

● 可编程的预分频系数:分频系数高为220。
● 32位的可编程计数器,可用于较长时间段的测量。
● 2个分离的时钟:用于APB1接口的PCLK1和RTC时钟(RTC时钟的频率必须小于PCLK1时钟 频率的四分之一以上)。
● 可以选择以下三种RTC的时钟源:
     ● HSE时钟除以128;
     ● LSE振荡器时钟;
     ● LSI振荡器时钟

● 2个独立的复位类型:
     ● APB1接口由系统复位;
     ● RTC核心(预分频器、闹钟、计数器和分频器)只能由后备域复位

● 3个专门的可屏蔽中断:
     ● 1.闹钟中断,用来产生一个软件可编程的闹钟中断。

     ● 2.秒中断,用来产生一个可编程的周期性中断信号(长可达1秒)。

     ● 3.溢出中断,指示内部可编程计数器溢出并回转为0的状态。

RTC时钟源:
三种不同的时钟源可被用来驱动系统时钟(SYSCLK):

● HSI振荡器时钟
● HSE振荡器时钟
● PLL时钟

这些设备有以下2种二级时钟源:

● 40kHz低速内部RC,可以用于驱动独立看门狗和通过程序选择驱动RTC。 RTC用于从停机/待机模式下自动唤醒系统。
● 32.768kHz低速外部晶体也可用来通过程序选择驱动RTC(RTCCLK)。

RTC原理框图

在这里插入图片描述
RTC时钟的框图还是比较简单的,这里我们把他分成 两个部分:

APB1 接口:用来和 APB1 总线相连。 此单元还包含一组 16 位寄存器,可通过 APB1 总线对其进行读写操作。APB1 接口由 APB1 总 线时钟驱动,用来与 APB1 总线连接。

通过APB1接口可以访问RTC的相关寄存器(预分频值,计数器值,闹钟值)。

RTC 核心接口:由一组可编程计数器组成,分成 两个主要模块 。
在这里插入图片描述g)
第一个模块是 RTC 的 预分频模块,它可编程产生 1 秒的 RTC 时间基准 TR_CLK。RTC 的预分频模块包含了一个 20 位的可编程分频器(RTC 预分频器)。如果在 RTC_CR 寄存器中设置了相应的允许位,则在每个 TR_CLK 周期中 RTC 产生一个中断(秒中断)。
在这里插入图片描述
第二个模块是一个 32 位的可编程计数器 (RTC_CNT),可被初始化为当前的系统时间,一个 32 位的时钟计数器,按秒钟计算,可以记 录 4294967296 秒,约合 136 年左右,作为一般应用,这已经是足够了的。

RTC具体流程:

RTCCLK经过RTC_DIV预分频,RTC_PRL设置预分频系数,然后得到TR_CLK时钟信号,我们一般设置其周期为1s,RTC_CNT计数器计数,假如1970设置为时间起点为0s,通过当前时间的秒数计算得到当前的时间。RTC_ALR是设置闹钟时间,RTC_CNT计数到RTC_ALR就会产生计数中断,

  • RTC_Second为秒中断,用于刷新时间,

  • RTC_Overflow是溢出中断。

  • RTC Alarm 控制开关机

RTC时钟选择

使用HSE分频时钟或者LSI的时候,在主电源VDD掉电的情况下,这两个时钟来源都会受到影响,因此没法保证RTC正常工作.所以RTC一般都时钟低速外部时钟LSE,频率为实时时钟模块中常用的32.768KHz,因为32768 = 2^15,分频容易实现,所以被广泛应用到RTC模块.(在主电源VDD有效的情况下(待机),RTC还可以配置闹钟事件使STM32退出待机模式).

RTC复位过程

除了RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器外,所有的系统寄存器都由系统复位或电源复位进行异步复位。
RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器仅能通过备份域复位信号复位。

系统复位后,禁止访问后备寄存器和RCT,防止对后卫区域(BKP)的意外写操作

读RTC寄存器

RTC内核完全独立于APB1接口,软件通过APB1接口对RTC相关寄存器访问。但是相关寄存器只在RTC APB1时钟进行重新同步的RTC时钟的上升沿被更新。所以软件必须先等待寄存器同步标志位(RTC_CRL的RSF位)被硬件置1才读。

配置RTC寄存器

必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、
RTC_CNT、RTC_ALR寄存器。

另外,对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询
RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是’1’
时,才可以写入RTC寄存器。

RTC时钟源

RTC是一个独立的时钟源
在这里插入图片描述

RTC寄存器

  • RTC控制寄存器 (RTC_CRH, RTC_CRL)

  • RTC预分频装载寄存器 (RTC_PRLH, RTC_PRLL)

  • RTC预分频余数寄存器 (RTC_DIVH, RTC_DIVL)

  • RTC计数器寄存器 (RTC_CNTH, RTC_CNTL)

  • RTC闹钟寄存器 (RTC_ALRH ,RTC_ALRL)

RTC控制寄存器高位——RTC_CRH 寄存器

在这里插入图片描述
作用:配置3个专门的可屏蔽中断(溢出中断、闹钟中断、秒中断)使能。

注意:系统复位后所有的中断被屏蔽,因此可通过写RTC寄存器来
确保在初始化后没有挂起的中断请求。当外设正在完成前一次写操作时(标志位RTOFF=0),不
能对RTC_CRH寄存器进行写操作。

RTC控制寄存器低位——RTC_CRL 寄存器

在这里插入图片描述
一般用到该寄存器的 3,4,5位

  1. 第 3 位为寄存器同步标志位,我们在修改控制寄存器 RTC_CRH/CRL 之前,必须先判断该位,是否已经同步了,如果没有则等待同步

  2. 第 4 位为配置标位,在软件修改 RTC_CNT/RTC_ALR/RTC_PRL 的值的时候,必须先软件置位该位,以允许进入配置模式

  3. 第 5 位为 RTC 操作位,该位由硬件操作,软件只读。通过该位可以判断上次对 RTC 寄存器的操作是否完成,如果没有,我们必须等待上一次操作结束才能开始下一次,也就是判断RTOFF位是否置位。

三个位总结如下:

① 修改CRH/CRL寄存器,必须先判断RSF位,确定已经同步。
② 修改CNT,ALR,PRL的时候,必须先配置CNF位进入配置模式,修改完之后,设置CNF位为0退出配置模式
③ **同时在对RTC相关寄存器写操作之前,必须判断上一次写操作已经结束,**

RTC 预分频装载寄存器——(RTC_PRLH/RTC_PRLL) 寄存器

作用:配置 RTC 时钟的分频数,

比如我们使用外部 32.768K 的晶振作为时钟的输入频率,那么我们要设置这两个寄存器的值为 7FFFh(32767),就可获得周期为1秒钟的信号。
在这里插入图片描述

RTC预分频器余数寄存器(RTC_DIVH、RTC_DIVL)

作用: 和他的名字一样,获得余数,也就是获取更精确的计时,比如:0.1s ,0.01 s等

寄存器是只读寄存器,其值在RTC_PRL或RTC_CNT寄存器中的值发生改变后,由硬件重新装载。
在这里插入图片描述

RTC 计数器寄存器——RTC_CNTX 寄存器

作用:存放计数器内的计数值。也就是用来记录时钟时间

该寄存器由 2 个 16 位的寄存器组成 RTC_CNTH 和 RTC_CNTL,总共 32 位,当进行读操作时,直接返回计数器内的计数值(系统时间)
在这里插入图片描述

RTC 计数器寄存器——RTC 闹钟寄存器(RTC_ALRH、RTC_ALRL)

作用: RTC时钟中断控制寄存器

该寄存器也是由 2 个 16 位的寄存器组成 RTC_ALRH 和 RTC_ALRL,也就是32位,当可编程计数器的值与RTC_ALR中的32位值相等时,即触发一个闹钟事件,并且产生RTC闹钟中断。
在这里插入图片描述

BKP备份寄存器

备份寄存器是42个16位的寄存器。可用来存储84个字节数据。
它们处在备份区域,当VDD电源切断,仍然由VBAT维持供电。

当系统在待机模式下被唤醒,或者系统复位或者电源复位,它们也不会复位。
执行以下操作将使能对后备寄存器和RTC访问:

  • 设置寄存器RCC_APB1ENR的PWREN和BKPEN位,使能电源和后备时钟。

  • 设置寄存器PWR_CR的DBP位,使能对RTC和后备寄存器的访问

一般用 BKP 来存储 RTC 的校验值或者记录一些重要的数据,

在这里插入图片描述

配置RTC寄存器:

1.查询RTOFF位,知道RTOFF的值为1.

2.置CNF值为1,进入配置模式。

3.对一个或者多个RTC寄存器进行写操作。

4.清除CNF标志位,退出配置模式。

5.查询RTOFF,直到RTOFF位变1,已确认写操作已经完成。

仅当CNF标志位被清除时,写操作才能进行,这个操作至少需要3个RTCCLK周期。


RTC相关库函数

RTC时钟源和时钟操作函数:

 void RCC_RTCCLKConfig(uint32_t  CLKSource);//时钟源选择

 void RCC_RTCCLKCmd(FunctionalState NewState)//时钟使能


RTC配置函数(预分频,计数值):

void RTC_SetPrescaler(uint32_t PrescalerValue);//预分频配置:PRLH/PRLL

void RTC_SetCounter(uint32_t CounterValue);//设置计数器值:CNTH/CNTL

void RTC_SetAlarm(uint32_t AlarmValue);//闹钟设置:ALRH/ALRL


RTC中断设置函数:

void RTC_ITConfig(uint16_t RTC_IT, FunctionalState NewState);//CRH


RTC配置函数:

void RTC_EnterConfigMode(void);//允许RTC配置 :CRL位 CNF

void RTC_ExitConfigMode(void);//退出配置模式:CRL位 CNF


RTC同步函数:

void RTC_WaitForLastTask(void);//等待上次操作完成:CRL位RTOFF

 void RTC_WaitForSynchro(void);//等待时钟同步:CRL位RSF


RTC相关状态位获取清除函数:

FlagStatus RTC_GetFlagStatus(uint16_t RTC_FLAG);

void RTC_ClearFlag(uint16_t RTC_FLAG);

ITStatus RTC_GetITStatus(uint16_t RTC_IT);

void RTC_ClearITPendingBit(uint16_t RTC_IT);


其他相关函数(BKP等)

PWR_BackupAccessCmd();//BKP后备区域访问使能

RCC_APB1PeriphClockCmd();//使能PWR和BKP时钟

RCC_LSEConfig();//开启LSE,RTC选择LSE作为时钟源

PWR_BackupAccessCmd();//BKP后备区域访问使能

uint16_t BKP_ReadBackupRegister(uint16_t BKP_DR);//读BKP寄存器

void BKP_WriteBackupRegister(uint16_t BKP_DR, uint16_t Data);//写BKP


配置RTC步骤

①使能PWR和BKP时钟:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);


② 使能后备寄存器访问:

PWR_BackupAccessCmd(ENABLE); //使能 RTC 和后备寄存器访问


③复位备份区域,开启外部低速振荡器。

BKP_DeInit();//复位备份区域


④ 配置RTC时钟源,使能RTC时钟:

RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE); //选择 LSE 作为 RTC 时钟(RCC_RTCCLKSource_LSI 和 RCC_RTCCLKSource_HSE_Div128)

RCC_RTCCLKCmd(ENABLE); //使能 RTC 时钟


⑤ 设置RTC预分频系数:RTC_SetPrescaler();

RTC_EnterConfigMode();/// 允许配置

RTC_SetPrescaler(32767); //设置RTC预分频的值

RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成


⑥ 设置时间:RTC_SetCounter();

RTC_EnterConfigMode();/// 允许配置

void RTC_SetCounter(uint32_t CounterValue);

RTC_WaitForLastTask(); //等待最近一次对RTC寄存器的写操作完成


⑦开启相关中断(可选):

void RTC_ITConfig(uint16_t RTC_IT, FunctionalState NewState);//RTC_ITConfig(RTC_IT_SEC, ENABLE); //使能 RTC 秒中断


⑧编写中断服务函数:

RTC_IRQHandler();


⑨部分操作要等待写操作完成和同步。

   RTC_WaitForLastTask();//等待最近一次对RTC寄存器的写操作完成

   RTC_WaitForSynchro(); //等待RTC寄存器同步 


具体的代码,库函数写的太多了,我会用CubeMx配置下,用HAL库写一个例程,几十行就可以解决RTC


关键字:STM32  RTC  实时时钟 引用地址:【STM32】RTC实时时钟,步骤超细详解,一文看懂RTC

上一篇:STM32 HAL CubeMX 串口IDLE接收空闲中断+DMA
下一篇:【STM32】STM32驱动 LCD12864程序代码(串行方式)

推荐阅读最新更新时间:2024-11-11 00:41

STM32嵌入式显示器:首款搭载 STM32H7 的高清屏幕
STM32嵌入式显示器:首款搭载 STM32H7 的高清屏幕,可为不同尺寸的屏幕提供漂亮的GUI图显 TouchGFX开发框架的实践者Riverdi 公司在最近的 Display Week显示周活动上展示了其STM32 嵌入式显示器产品线。该产品是一块1280 x 800 分辨率、800 尼特亮度的10.1 英寸IPS 显示屏搭配一块 STM32H7电路板。Riverdi 显示器支持TouchGFX Designer开发环境,开发人员可以直接在这个软件上开发自己的图形用户界面。该公司还为开发者提供非真空半贴合触屏、触控面板和安装框架选择,工程师可以根据各自的需求定制显示器配置,优化价格。此外,Riverdi 是一家为数不
[单片机]
<font color='red'>STM32</font>嵌入式显示器:首款搭载 STM32H7 的高清屏幕
stm32 i2c通信 [操作寄存器+库函数]
I2C总线是由NXP(原PHILIPS)公司设计,有十分简洁的物理层定义,其特性如下: 只要求两条总线线路:一条串行数据线SDA,一条串行时钟线SCL; 每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机/从机关系软件设定地址,主机可以作为主机发送器或主机接收器; 它是一个真正的多主机总线,如果两个或更多主机同时初始化,数据传输可以通过冲突检测和仲裁防止数据被破坏; 串行的8 位双向数据传输位速率在标准模式下可达100kbit/s,快速模式下可达400kbit/s,高速模式下可达3.4Mbit/s; 连接到相同总线的IC 数量只受到总线的最大电容400pF 限制。 其典型的接口连线如下: I2C的协议
[单片机]
STM32 DHT11串口打印源程序
1.硬件准备: USB转TTL工具一个 核心板STM32F103C8T6 DHT11传感器 2.软件准备: 串口调试助手 2.硬件连线 USB转TTL的RX----32板子上的PA9 USB转TTL的TX----32板子上的PA10 DHT11的DAT连接PB14 3.程序源码 #include dht11.h ////////////////////////////////////////////////////////////////////////////////// #include delay.h //////////////////////////////////////////////////////
[单片机]
<font color='red'>STM32</font> DHT11串口打印源程序
STM32串行通信USART讲解笔记
dragon12345666的专栏 目录视图 摘要视图 订阅 异步赠书:Kotlin领衔10本好书 SDCC 2017之区块链技术实战线上峰会 程序员8月书讯 每周荐书:Java Web、Python极客编程(评论送书) STM32串行通信USART讲解笔记 标签: 中南赵小龙 STM32 串行通信 USART1 2014-04-25 16:58 2741人阅读 评论 (0) 收藏 举报 分类: STM32 学习(9) 版权声明:本文为博主原创文章,未经博主允许不得转载。 目录 (?) STM32串行通信USART程序例举链接:http://blog.csdn.ne
[单片机]
<font color='red'>STM32</font>串行通信USART讲解笔记
S3C6410裸机RTC实时时钟
相对于STM32,6410的RTC是相当的简单. /*************************************************************************************************************   * 文件名: RTC.c   * 功能:      S3C6410 RTC底层驱动函数   * 作者:      cp1300@139.com   * 创建时间:    2012年3月28日21:52   * 最后修改时间:2012年3月28日   * 详细:      RTC相关底层驱动函数  **********************
[单片机]
STM32初学笔记1之RCC(上)
我参考了STM32的标准外设库中的RCC例程,然后对其在原有的基础上做了一定的修改,单独添加到了RCC_ClkConfig.C和RCC_ClkConfig.H两个文件当中,把这个作为以后系统时钟配置的通用函数,在这里共享出来,示例代码如下: ////////////////////////////////////////////////////////////////////////////////////////////////////// RCC_ClkConfig.C /////////////////////////////////////////////////////////
[单片机]
STM32--MDK固件库配置
STM32--MDK固件库配置
[单片机]
STM32--MDK固件库配置
STM32 CAN 波特率的确定
先看两份资料: (1),STM32 得到500Kb/s的波特率 CAN_InitStructure.CAN_SJW=CAN_SJW_1tq; CAN_InitStructure.CAN_BS1=CAN_BS1_8tq; CAN_InitStructure.CAN_BS2=CAN_BS2_7tq; CAN_InitStructure.CAN_Prescaler=1; 每一位的Tq数目 = 1 (固定SYNC_SEG) + 8 (BS1) + 7 (BS2) = 16 如果CAN时钟是 8 MHz : (8M / 1 ) / 16 = 500K 其中: 1 为分频系数 16 为每一位的Tq数目 为了设置为 100K,
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved