嵌入式系统复杂问题解决方案:模拟与数字的智能集成

发布者:TranquilSilence最新更新时间:2021-06-10 来源: eefocus关键字:嵌入式系统  模拟与数字  智能集成 手机看文章 扫描二维码
随时随地手机看文章

鉴于在性能、成本、功耗、尺寸、新功能和效率等方面宏大的提升目标,未来嵌入式系统的设计面临着复杂的挑战。不过,一种有望解决这些复杂问题的设计选项已开始崭露头角——即模拟元件与ARM微控制器内核的智能集成。


这种方案与传统模拟集成的区别在于,新方案具有超高的性能,还经过了多种优化,以解决具体的系统级问题。虽然每个市场对这些提升领域的优选次序都有着自己的认识,但同时满足多个因素的要求实为众望所归,可以通过集成多个分立式元件来实现。从逻辑上讲,组合多个器件可以实现这些嵌入式系统目标中的一大部分,但只是简单地把多个分立式元件与一枚处理器集成到一个封装之中,这并非答案所在;解决方案要复杂得多,需要智能集成。


高性能模拟元件(放大器、ADC、DAC、基准电压源、温度传感器、无线收发器等)与ARM32位处理器内核的智能集成,再加上正确的数字外设,这种方式可以实现分立式解决方案无法望尘莫及的目标。为了构造出最佳混合信号控制处理器,不但需要对整个系统有着深入的了解,需要知晓是否有正确的知识产权(IP)可用,同时还具备有关该知识产权的专业知识。


毫无疑问,负责为这些集成器件制定功能要求的芯片设计师和系统工程师必须对最终应用需求有着充分的了解。这种领域知识至关重要,包括对电路板级要求的深入了解,包括尺寸、温度范围、制造考虑因素、功耗、成本和信号链中的配套元件。图1所示为智能集成器件中经常用到的模拟和数据IP模块。




针对目标应用而优化的模数组合式IP


图1 智能集成:针对目标应用而优化的模数组合式IP


有正确的知识产权可用,这是实现系统级目标的有力起点。这个起点是缩短混合信号控制处理器开发周期的必要条件。越来越多地,适用于具体应用的知识产权本身的获取/形成和实施需要由半导体制造商来协调。在此基础上,还需要对这些知识产权进行调整以满足两点具体要求。第一点是基于主要目标应用的需求优化性能和运行,由此实现系统级效益的最大化。第二点是优化知识产权,使其与混合信号控制处理器中的其他补充性知识产权模块良好、方便兼容。最后,在业务层需要有协调机会,将系统制造商与半导体制造商的专长和知识有机地结合起来,从而实现独特的优化设计。


有许多应用都可以从集成了高性能模拟和ARM微控制器内核的器件受益,包括温度检测、压力检测、气体检测、太阳能逆变器、电机控制、医疗生命体征监护、汽车监控系统以及水表/电表/气表。本文将重点考察电机控制的应用领域,其中,优化高性能模拟与ARM微控制器内核的集成可在成本、功耗、尺寸和性能四个方面带来极大的优势。


电机控制,其目标是提高效率以促进环保事业,以及降低成本。请注意,尽管这些智能集成混合信号器件是针对具体的最终应用而优化的,但它们也可以很好地用于功能要求类似于主要目标应用的关联应用。


在关于发电方式的环保担忧之外,人们还十分关心能源的使用效率问题。鉴于电机占全球用电量的40%,所以问题是如何提高这些系统的环保性。答案在于提高其效率,由此减少能耗。通过普及高效电机而节省的能源量十分可观:每年可节省数千亿千瓦时的用电量,可减少大气中二氧化碳排放量数百万吨。显然,高效电机的影响具有十分重要的意义。


具体地,有多个关键因素推动着高效电机的应用。其中一个是环保问题推动的政府立法。欧盟已经实施相应的法规,将来还会实施更多法规,强制要求使用更高效的电机系统。另一个关键推动因素是全寿命成本优势。在电机控制系统的成本中,材料约占15%,运行所用能源成本占85%。可见,通过提高效率,降低电机系统全寿命成本的潜力是非常巨大的。


提高效率的方式包括特别的电机设计,电机类型的选择,为不具备这种控制的系统添加可调速驱动器(ASD),以及针对效率而优化的控制算法。就特别的电机设计和特定电机类型的选择而言,永磁电机一直是关注重点,其使用呈增长之势。永磁电机的效率最高可达96%,超过了欧洲超高效能效标准(IE3)。


智能集成式混合信号控制处理器有可能实现ASD和控制算法的改进。以成本优势明显的方式集成基于ARM的CPU子系统、PWM、ADC和多路复用功能,结果可以在系统层省去ASD的物料成本。


利用转换时间较快的高精度ADC,可以改进控制算法。结果可增进电机系统的总体效率。精度高于12位的ADC可提高精度,用其来控制相位电流。然而,不能用采样转换延迟控制来换取更高的精度。这样就不能选择通过均值或过采样方式提升SNR的ADC。需要以终端机器(比如,贴片机)的运动速率来测量变量。快速转换时间,加上快速ARM微控制器内核,可以加快控制环路的运行速率,改进响应时间,缩短建立时间。反过来,这又能提高生产线系统的吞吐量和效率,从而降低生产成本。就如太阳能光伏应用一样,SARADC是电机控制的良好选择。在电机控制的例子中,可以设计出高性能SARADC,无需均值或过采样也可达到要求。


图2中的各种知识产权模块都经过精心设计,相互配合良好。需要的结果是一种高度敏捷的仪器仪表子系统,可以采集多个计划精确的采样,并高效地将其交付给 ARM的主存储器。对于电机控制,相位绕组电流和其他测量值均可在PWM周期中的精确指定点进行同步采样。在此基础上,采样数据可以在不产生开销的情况下高效地移至微控制器的存储器以进行处理。为了实现这一目标,混合信号控制处理器中有5个不同的模块需要协同工作。




二级太阳能光伏逆变器系统功能框图


图2 电机控制系统功能框图


周期开始时,发送一个PWM脉冲到触发路由单元(TRU),后者负责将触发主机连接至触发从机。在本例中,PWM为触发主机,ADC控制器 (ADCC)定时器为触发从机。ADCC需要具备管理大量事件的能力,并使用定时器(TMR0/TMR1)来跟踪从PWM触发到启动特定ADC事件所需时间。在定时器与特定事件相匹配的情况下,选择的是ADC输入多路复用(M0和M1)和通道(ADC0和ADC1)。接下来,将转换开始信号发送至ADC。采样数据从ADC移至ADCC,然后从ADCC通过DMA移至微控制器SRAM。


下面的图3所示为PWM脉冲、PWM同步和ADCC所控制ADC事件之间的相对时序。




不同电机控制变量进行采样的时序


图3 用ADC对5个不同电机控制变量进行采样的时序


对于面向电机控制的混合信号控制处理器设计,其在PWM、TRU、多路复用、缓冲、SARADC和DMA方面有着良好的知识产权基础。然而,为了在PWM周期中实现ADC采样的精密时序,必须对这些模块的设计进行特别的改动。ADCC模块的必要性是有事实依据的,即其他知识产权模块集成于单枚芯片中,它们之间需要协调。ADCC即专门针对这一要求而设计,充分发挥了两个ADC引擎的高速优势,这些ADC引擎的转换时间快达380ns。


结论


高级基础技术只是个开端而已——芯片设计师必须对客户的系统有着全面的了解,并在精密模拟和数字元件的设计、应用及优化方面具备深厚的专业知识。另外,芯片制造商必须愿意并有能力与系统制造商进行直接互动和协作,共同打造新型产品。选用最合适的元件,针对目标终端应用进行优化,对知识产权模块进行改动,使其默契配合。只有这些条件得到满足,才能将优化的独立元件有机地整合起来。ADI 公司即推出了此类智能集成产品的良好典范,其中包括ADuCM360(一款完全集成式3.9kSPS、24位数据采集系统)以及ADSP-CM403F和 ADSP-CM408F(集成两个高精度16位ADC和ARMCortex-M4处理器内核的混合信号控制处理器)。


关键字:嵌入式系统  模拟与数字  智能集成 引用地址:嵌入式系统复杂问题解决方案:模拟与数字的智能集成

上一篇:ARM Linux根文件系统(Root Filesystem)的制作
下一篇:基于ARM和DS18B20设计网络化的智能温度传感器

推荐阅读最新更新时间:2024-11-07 08:12

基于uClinux嵌入式系统的汽车黑匣子的设计与开发
汽车黑匣子就是汽车行驶记录仪,它是用来记录汽车在行驶中的状态。随着黑匣子在飞机上的成功运用,越来越多的国家也在汽车上运用这种技术。早在1990年以前欧共体就通过了在汽车上安装黑匣子的立法,要求欧共体的15个成员国在10年内给使用中的900万辆商用车中安装这个装置。美国、***、香港及马来西亚等国家和地区也相继广泛使用汽车黑匣子 。从使用的效果来看,汽车黑匣子不但可以在事故放生后准确的反映当时汽车的状态同时也在预防汽车事故方面取的了显著的效果。在2004年10月1日,我国推出了新的《机动车运行安全技术条件》(GB7428-2004),明确要求用于公路运营的载客汽车、重型载货汽车、半挂车应当安装、使用符合国家标准的汽车行驶记录仪。
[单片机]
基于uClinux<font color='red'>嵌入式系统</font>的汽车黑匣子的设计与开发
改进型时间触发嵌入式系统编程模式
引言 目前,RTOS特别是抢先式RTOS在嵌入式系统中的应用越来越广泛,但是还有很大一部分产品使用是小型单片机。这些系统由于成本的限制,通常资源非常有限,比如ROM往往小丁32 KB,RAM小于2 KB,由于RTOS对每个任务都要开辟单独内存区域,存放任务的上下文和各任务独立的堆栈,所以在这种系统中使用RTOS非常勉强。对于这些低成本资源受限系统通常采用“前后台”(或者叫“超级循环”)结构进行编程,这实际上是一种事件触发的编程模式,当中断数目较多且系统完成的功能相对复杂时,就会使系统的程序编写变得非常复杂并使系统运行的可预测性迅速下降。 针对这个问题,Michael J.Pont提出了一种“基于时间触发的编程模式”,这种方
[单片机]
改进型时间触发<font color='red'>嵌入式系统</font>编程模式
【干货】教你如何以0 MIPS运行你的嵌入式系统
: Øivind Loe , 微控制器产品高级营销经理 即使是在诸如应用的无线连接这种主导功耗的事件中,让尽可能多的进程自主运行,也可大大提高电池寿命。降低功耗一直是微控器( )市场的一个主要关注点。超低功耗 MCU 现在可以大大降低工作模式和深度睡眠模式下的功耗。这种变化的效果是显而易见的,它大大提高了我们日常嵌入式应用中的寿命,并且提供了在未来使用能量收集的可能性。 然而,要基于新型 MCU 降低功耗,开发人员必须考虑到许多因素,对此 Silicon Labs 特别撰写一篇技术文章: “ 以 0 PS 运行你的嵌入式系统 ” ,帮助开发人员了解如何利用新型 MCU 中外设的自主运行,通过更接近以 “
[机器人]
嵌入式系统数字图像采集接口电路设计
一、引言 随着半导体技术的飞速发展,具有图像功能的嵌入式应用愈来愈多。从数码相机、可视电话、多功能移动电话等消费产品到门禁、数字视频监视等工业控制及安防产品,图像采集和处理已成为重要的组成部分之一。图像采集需要进行同步信号的处理,比通常的A/D数据采集过程复杂,电路的设计也较为困难。传统PC上的图像采集卡都是在Philips、Brooktree等半导体公司提供的接口芯片基础上,由专业公司开发生产。在嵌入式系统中不同的处理器和图像传感器的信号定义及接口方式不同,没有通用的接口芯片。另外,利用系统中的现有资源设计图像采集电路,可以减少器件数量、缩小产品体积和降低系统成本。所以,通常嵌入式系统中要求自行设计图像采集接口电路。本
[嵌入式]
基于Linux-ARM平台的3G无线联网方案设计
0 引言 目前,嵌入式技术已广泛应用于工业控制、无线通讯、网络应用、消费类电子产品、成像和安全产品等各类产品。随着3G牌照的发放,无线网络的带宽大幅扩展,具有3G无线网络接入功能的嵌入式系统更加具有发展前景。本文将介绍中兴的AC580无线网卡在以S3C2410微处理器为核心的嵌入式系统上的应用。 1 终端系统的硬件平台 1.1 系统体系结构 S3C2410处理器作为核心芯片集成了许多重要功能模块,本系统主要用到以下部分:NandFlash控制器、SDRAM控制器、3个通道的UART、2个USB主机接口、1个USB设备接口、JTAG。NandFlash作为存储器,用于存储支撑整个系统软件的BootLoader、Kernel、
[单片机]
基于Linux-ARM平台的3G无线联网方案设计
用AT91 RM9200构建高可靠嵌入式系统
   摘要 提出一种基于AT91RM9200处理器的高可靠双机温备解决方案。利用EPlC6、MAX6374设计两个冗余的外部Watchdog监控处理器系统的工作状态,利用AT91RM9200自带的Watchdog作为内部监测机制监控处理器本身的故障;设计并给出了以AT91RM9200为核心的监控机制的具体实现,包括心跳信号的发送和中断服务程序的设计。   本文设计了一种以AT91RM9200处理器为核心的高可靠嵌入式系统。系统具有两台机组,当一台机组发生故障后,另一台机组接管工作并继续运行。系统提供外部和内部Watchdog(看门狗)监控机制构成一级冗余、两级监控的可靠性设计方案。其中外部Watchdog分别采用MAX6374和
[应用]
意法半导体推出《通过SensorTile了解嵌入式系统》物联网课程
中国,2018年2月9日 —— 横跨多重电子应用领域的全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)今天宣布,包括学生、创客、工程师新秀和计算机科学家在内,人人都可以学习 “Introduction to Embedded Systems with SensorTile” 课程(通过SensorTile了解嵌入式系统)。  包含加州大学洛杉矶分校(UCLA)William Kaiser教授为大一计算机工程班的学生开发的教学课程,该在线课程资源为理解基于传感器的物联网(IoT)嵌入式系统的基本原理打下基础。意法半导体鼓励其他大学的教授改编补充这套课程。  这套由
[半导体设计/制造]
Proteus软件在嵌入式系统教学中的应用研究
   0 引言   嵌入式系统是一门涉及计算机体系结构、计算机软件以及其他相关电子技术的综合技术。目前,嵌入式系统技术已经成为最热门的技术之一,各类企业对具备嵌入式系统设计开发能力人才的需求量非常旺盛。在目前各高校开设的嵌入式系统课程中,普遍采用的微处理器是8位的单片机8051,32位ARM7TDMI核的飞利浦NXP LPC系列和三星S3C4480芯片。首先以单片机作为嵌入式系统设计学习的入门,掌握了基本的概念和设计方法之后,再把ARM7内核CPU作为一种“功能更强大的单片机”,无缝升级到流行的ARM平台。   传统的嵌入式系统教学,课堂环节多是纯理论教学,实践环节一般也是使用传统的实验箱,实验项目较少,内容固定,创新手段不足
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved