基于MSP430单片机和CH376USB接口的信号采集存储系统

发布者:EtherealLight最新更新时间:2021-07-07 来源: 21ic关键字:MSP430  单片机  CH376USB接口 手机看文章 扫描二维码
随时随地手机看文章

摘要:给出了一种基于CH376实现MSP430单片机对实验室小型天线信号采集存储的系统。由于工程测试的需要设计开发了天线方向图自动测试系统。该系统以MSP430单片机为核心,由自动控制模块、信号采集和数据显示模块和USB主机方式数据存储模块三部分组成。从实验结果采看,该系统能够实现转台的自动控制、信号的自动采集、天线方向图的自动绘制和数据实时存储到U盘。测试平台搭建方便,具有测试速度快、精度高、性能稳定的特点。


在现代控制系统中,经常需要在操作现场进行数据采集,以及对数据进行处理来实现现场控制,但是由于单片机数据存贮容量和数据处理能力都较低,因此本文主要介绍了使用USB总线通用接口芯片CH376和16位单片机MSP430对天线发射的信号进行数据采集处理,并且能够将这些大容量的数据以.txt文本格式实时的存储到U盘中,然后能在上位机上方便的打开查看和应用。这样就可以很容易的实现把单片机所采集的数据传送到PC机上,再在PC机上进行数据处理,充分发挥两者各自优势。


本文首先要设计出天线方向图的自动测试系统。通过这个天线参数自动化测量系统准确地发送和接收信号,从而进行数据的采集处理和存储等。早期的天线测试主要依靠手工,误差大、效率低。随着计算机应用技术的发展,出现了用于天线测试的自动控制系统,有效地提高了测试精度和工作效率。由于实验研究和小型天线工程测试的实际需求,提出并设计了一种基于MSP430的天线方向图自动测试系统,整个电路以系统稳定、功能全面、控制方便、成本节约为原则进行设计。从实验结果上看,该系统能够完成对天线的准确测试,并且能够实现数据更加精确方便地采集存储。


1 系统总体设计


系统设计4*4矩阵键盘作为操作控制端,以MSP430F149单片机为核心设计控制模块,控制继电器的闭合对云台进行操作,实现天线的全方位转动,同时系统实时采集无线模块接收到的信号并进行处理,再通过显示模块LCD240*128显示方向图及其他天线参数值。系统还带有USB总线接口芯片CH376的存储模块,如果在工作的时候需要数据的收集和存储,通过一个U盘就可以轻松实现。

基于MSP430单片机和CH376USB接口的信号采集存储系统

测试系统主要包括以下几个部分:无线信号发射和接收模块、信号采集控制模块、数据处理、显示及存储模块。原理框图如图1所示。


2 天线参数测量系统硬件设计


本系统的设计要求主要如下:一是利用MSP430控制天线云台按测试要求转动;二是对天线信号进行数据采集;三是根据采集到的数据绘制方向图;四是将这些大容量的数据以.txt文本格式存储到U盘中。系统硬件结构如图2所示。

基于MSP430单片机和CH376USB接口的信号采集存储系统

2.1 系统自动控制模块实现


天线方向图自动测试系统中的自动控制主要指MSP430对天线转台的控制。本系统采用云台来带动天线转动,通常云台在工作时因为负重的原因,转速可能会产生相应的一些变化,为了精确的实现参数的测量,在测量开始后需要先对装载天线的云台的转速进行一些校正。天线转台选取301全方位云台,该云台工作电压是交流24 V,额定负载为18 kG,水平转速为每秒6°。当接到上下动作电压时,垂直电机转动,接到左右电压时,水平电机转动。


在测量过程中,将行列式非编码键盘,挂接至MSP430具有中断功能的P1口上,MSP430F149的P1.0引脚用来控制电机的左转,P1.1控制电机的右转,MSP430F149的P2.0口配置为中断使能,上升沿触发。以中断查询的工作方式,将相关控制指令参数发送给MSP430,MSP430将其转换成电脉冲经驱动电路带动转台平稳转动。经实验,在额定负载内,转速精确。由于绘制方向图只需要角度的变化量,可通过MSP430中定时器TA模块,采用中断定时的方法产生固定的角度,使天线按测试要求转动。


2.2 信号采集与信号显示处理模块实现


信号采集单元主要由测量接收机和A/D转换器组成。信号采集电路主要由检波器、电流/电压转换器直流放大器组成。测量接收机必须经电流/电压转换后再经过直流放大器进行放大,以满足A/D转换的需要;A/D转换器将模拟信号转换为数字量使能进行相应软件处理。M SP430F149内置有高速的12位模数转换模块ADC12,因此不必再外接AD转换芯片即可实现对模拟量的数字化处理。由于AD模块和微控制器都集中在一块芯片上,所以大大减轻了设计负担,降低了产品成本,灵活方便,使结构更加紧凑,系统更加稳定,提高仪器的可靠性。


为了便于用户操作和观测测量过程与结果,测试信号采集和数字化后,通过绘图程序在液晶上实时动态显示。该显示系统选择基于RA880 6控制器的ZLG240128F-BTSSWE-YBC、自带触摸屏、分辨率为240*128的图形点阵液晶显示模块,来控制系统的启动、停止、功能的切换以及处理结果的显示。一方面减小了系统的体积、节省了成本,另一方面可使交互界面更为美观完善。ZLG240128F-BTSSWE-YBC内置了功能强大的点矩阵液晶显示(STN-LCD)控制器RA8806,RA8806支持文字和绘图两种混合显示模式、支持4/8-bits的6800/8080MPU接口和4/8-bits LCD驱动接口、内建智能型电阻式触控扫描控制器,支持4线电阻式触摸屏扫描接口等,其中LCD与单片机的接口直接采用I/O方式即可。


2.3 USB主机方式数据存储模块实现


本课题所设计的方式即让MSP430F149通过USB主机接口,在相关文件系统的规范下以规定的数据格式直接读写USB移动存储设备,再通过存储设备与计算机进行数据的交互,此方案避免了与上位机之间的直接的通讯连接,兼顾到了系统的小型化与便携性。MSP430并不具有USB接口,本系统采用USB设备主机接口专用芯片CH376为其扩展USB主机接口。


CH376是由南京沁恒电子有限公司制造的U盘和SD卡的文件管理控制芯片,内置多种文件系统的固件代码,用于单片机读写U盘和SD卡中的文件,支持多级子目录,支持中文、英文、长文件名和小写文件名等;具有USB-HOST主机接口功能与USB设备接口功能,支持动态切换主机方式与设备方式;内置了常用的USB底层固件协议;内置了固件处理Mass-Storage海量存储设备的专用通讯协议;支持FAT16和FAT32以及FAT12符合windows的文件系统格式;提供文件管理功能;打开、新建或删除文件、枚举和检索文件、创建子目录、支持长文件名;提供文件读写功能;以字节为最小单位或者以扇区为单位对多级子目录下的文件进行读写。


CH376与单片机之间有3种接口方式可供选择:2MB速度的8位被动并行接口、2MB速度的SPI设备接口、最高3Mbps速度的异步串口。由于MSP430F149具有丰富的I/O口资源,为了提高文件读写的速度,系统采用8为并行接口连接的方式。为将CH376配置为8位并口通讯方式,则TXD接GND,其余引脚悬空。在芯片上电复位时,CH376将采样TXD引脚的状态为低,据此选择8为并口的通讯方式。


CH376支持3.3 V电源供电,将V3引脚与VCC引脚短接,共同输入3.3 V电压.电容C14和C15则用于外部电源退耦;ACT#引脚与发光二极管和电阻相串联,用于表示设备所运行的状态。


MSP430单片机与CH376USB接口芯片的连接图如图3所示。

基于MSP430单片机和CH376USB接口的信号采集存储系统

3 测试系统软件设计


以上已介绍了系统的硬件总体结构,如何让各个功能模块按照预定的要求协调运转起来,这就要依赖于软件的设计。整个系统核心处理单元单片机的主程序设计如图4所示。

基于MSP430单片机和CH376USB接口的信号采集存储系统

首先系统要对MCU、键盘、LCD、CH376的U盘读写进行初始化;初始化后先云台归零测量转速;然后再归零,明确一下需要测量的参数,这里面包括对于云台的控制、角度的测量、接收模块的操作;接着就是对于数据的采集及采集后的处理,采集后的处理也是在MCU上完成;自动化采集处理完成后,通过4*4矩阵键盘来控制方向图和参数的显示及通过外部USB设备存储。


系统中拟采用U盘作为测试数据的存储工具,程序将ADC模数采集的数据添加到U盘文件MY_ADC.TXT中,如果文件存在那么将数据添加到文件末尾,如果文件不存在那么新建文件后添加数据。具体的程序流程如图4。


4 实验结果及分析


图5所示在主函数中进行调用,来验证U盘读写模块的功能。这里初始化了通信接口,也就是串口,在程序运行的过程中可以向串口助手来输出当前的信息,我们就可知道程序运行到了什么地方、此时正处于何种状态。

基于MSP430单片机和CH376USB接口的信号采集存储系统

在测试成功后,把U盘插入电脑,可以看到处理后的以,txt文本格式存储的数据如图6所示。

基于MSP430单片机和CH376USB接口的信号采集存储系统

结果分析:上图中显示的数据是为了显示的需要而处理的,这里只是简单的演示,显示的数据是为了LCD显示而处理后的数据,也没有写入对应的角度,因为采集是按固定的角度10进行的,最大值对应于00。如果采用更高显示精度的可以比较完整的写入精确处理的数据。


5 结论


本文论述了一种基于MSP430单片机的天线方向图自动测试系统的构建。系统具有手动控制测试功能,通过外部输入信号控制转台的运动和天线信号的采集、显示、存储以及方向图的绘制;并且详细介绍了USB总线接口芯片CH376的数据存储。结果表明,在实现USB数据移动存储接口电路设计中,由于CH376内置文件系统,使单片机端的操作更加方便,只需要发送命令和数据就可以在U盘中创建文件、读写数据。从实验效果来看,该设计原理是可行的,较好的实现了天线方向图的自动测试控制,测量精度和可靠性比较高,能够满足实验室研究和小型天线的测试需要。


关键字:MSP430  单片机  CH376USB接口 引用地址:基于MSP430单片机和CH376USB接口的信号采集存储系统

上一篇:三轴磁阻电子罗盘的设计和误差补偿
下一篇:MSP430定时器A 输出1KHz的PWM方波

推荐阅读最新更新时间:2024-10-29 11:21

单片机系统没有工作的检查步骤
  1. 查看门狗的复位输出,可能的话在电路板上加一个LED,下拉,这样看起来就更方便;要是看门狗复位信号有,往下;   2. 查单片机,看看管脚有没有问题;一般编程器能够将程序写入,说明单片机是好的;最好手头上准备一个验证过的单片机,内部有一个简单的程序,比如,在某个口线上输出1个1秒占空比的方波等,可以使用万用表测量。 加一句:设计产品时,要在关键的地方:电源、串口、看门狗的输出和输入、I/O口等加不同颜色的LED指示,便于调试;作为批量大的产品,可以去掉部分LED,一方面是降低成本、一方面是流程保密;   3. 再查磁片电容,有些瓷片电容质量不行,干脆换了;顺便说一下,换器件最好使用吸锡带,将焊盘内的锡吸干净,再将器件拔出
[单片机]
74HC595在单片机上的应用及程序
74HC595具有8位串入并出的三态门电路。 高速率:最高55MHz(5V工作电压) 宽的工作电压范围:2V -6V 每个口的最大电流值(QA-QH): 35mA 当单片机的I/O资源比较紧张时,采用595并进行级联是一个很好的选择。 管脚定义: PIN NO symbol name and function 15 QA data output 1 QB data output 2 QC data output 3 QD data output 4 QE data output 5 QF data
[单片机]
基于uC/OS-II和MSP430单片机的RTOS的技术分析
  单片机作为嵌入式信息产品的一个重要应用方面,其使用、设计面临着全新的挑战。一方面,人们对嵌入式产品的要求越来越高,稳定可靠、功能丰富、物美价廉的信息产品将成为人们的首选。另一方面,随着微电子工艺水平的发展,单片机处理器的能力不断提高,从最初的8位单片机到16位,进而32位单片机,功能越来越强大,执行速度越来越快,集成度、精确度也越来越高,应用领域进一步拓宽。可以说,单片机芯片的性能已经能够满足现代人们对嵌入式信息产品的更高要求。为了能将二者有效地结合起来,嵌入式RTOS的软件设计方法也取代了以前的前后台(超循环)设计方法,越来越受到重视和应用。   正如分时操作系统中Linux的出现打破了Windows一统天下的局面一样,
[单片机]
基于uC/OS-II和<font color='red'>MSP430</font><font color='red'>单片机</font>的RTOS的技术分析
为什么STM32单片机编程时需要使能时钟
作为一个STM32的菜鸟级人物,我刚开始接触STM32时,其实和当年开始学习51单片机的心理是一样的。茫然,谁说不是呢?但是,正常的学习途径无非就是看书,然后敲代码,最后烧程序,有问题就check,然后再继续烧,我都怀疑我快成了火头工。因为在我的印象中,只有这类职业才和“烧”有着密不可分的联系。即使当一名敬业又牛逼的火头工是我毕生的梦想。OK,不侃了。我希望,通过写日志把我作为一个菜鸟在学习STM32中的问题记录下来,同时以我为鉴,规避那些没有必要的破事。 1. 学习STM32要不要基础 原则上它应该是需要的,但是,我们也能发现很多人也是没有基础的。比如说,我们实验室的大师兄原来是管理专业,但是现在相当牛逼,软硬皆通。如果你和
[单片机]
单片机控制红外线通信接口电路设计
0 前言   热误差是数控机床的最大误差源,数控机床的温度测试为机床热误差的补偿提供依据。传统的测温方案是将模拟信号通过电缆远距离传输至数据采集卡进行A/D转换并处理,实用中必须解决长线传输和模拟量传感器布线等问题。本文介绍了一种新型的设计方案,控制器采用SAMSUNG公司的32位ARM微控制器S3C44BOX,温度传感器采用单总线数字温度传感器DS18B20。采用数字温度传感器即在测试点完成了信号的数字化,提高了传输的可靠性,同时简化了外围电路,也便于传感器在机床上的布置安装。ARM处理器控制数字温度信号的采集,并与上位PC机通讯,同时其他硬件资源提供热补偿系统其他功能。本文在介绍数字温度传感器DS18B20的基础上,给出了系统
[单片机]
用<font color='red'>单片机</font>控制红外线通信<font color='red'>接口</font>电路设计
提高 MSP430G 系列单片机的 Flash 擦写寿命的方法
摘要 在嵌入式设计中,许多应用设计都需要使用EEPROM 存储非易失性数据,由于成本原因,某些单片机在芯片内部并没有集成EEPROM。MSP430G 系列处理器是TI 推出的低成本16 位处理器,在MSP430G 系列单片机中并不具备EEPROM。为了存储非易失性数据,MSP430G 系列处理器在芯片内部划分出了256 字节的Flash 空间作为信息Flash,可用于存储非易失性数据,但是由于Flash 与EEPROM 在擦写寿命上存在一定差距,所以在实际应用中,这种应用方式并不能够满足所有客户的需求。本应用笔记介绍了使用代码区域Flash 来模拟EEPROM,通过一定的软件处理算法,可以大大增加数据存储周期的一种方法。本文给
[单片机]
提高 <font color='red'>MSP430</font>G 系列<font color='red'>单片机</font>的 Flash 擦写寿命的方法
沁恒股份8位USB设备单片机: CH552概述
概 述 CH552芯片是一款兼容MCS51 指令集的增强型E8051内核单片机,其79%的指令是单字节单周期指令,平均指令速度比标准MCS51快8~15 倍。 CH552 支持最高24MHz 系统主频,内置16K 程序存储器ROM 和256 字节内部iRAM 以及1K 字节片内xRAM,xRAM 支持DMA直接内存存取。 CH552内置了ADC 模数转换、触摸按键电容检测、3 组定时器和信号捕捉及PWM、双异步串口、SPI、USB设备控制器和全速收发器、USB type-C等功能模块。 系统框图 特 点 》 增强型E8051内核CPU,速度比标准MCS51快8-15倍,特有XRAM数据快速复制指令; 》 内置16KB
[单片机]
沁恒股份8位USB设备<font color='red'>单片机</font>: CH552概述
【GD32 MCU 入门教程】GD32 MCU 常见外设介绍(12)FMC 模块介绍
12.1.FMC 基础知识 闪存控制器(FMC),提供了片上闪存需要的所有功能。FMC 也提供了页擦除,整片擦除,以及32 位整字或 16 位半字编程闪存等操作。 GD32 MCU 支持不同类型编程的具体说明如下表 GD32 MCU 不同系列编程区别所示。 12.2.FMC 功能 支持 32 位整字或 16 位半字编程,页擦除和整片擦除操作; 支持 CPU 执行指令零等待区域(code area)和非零等待区域(data area); 大小为 16 字节的可选字节块可根据用户需求配置; 具有安全保护状态,可阻止对代码或数据的非法读访问; 相关术语说明 GD32F10x 和 F30x 分别有 MD(中容量) 、HD(大容量)、X
[单片机]
【GD32 <font color='red'>MCU</font> 入门教程】GD32 <font color='red'>MCU</font> 常见外设介绍(12)FMC 模块介绍
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved