上述节选《Cortex‐M3 权威指南》 初稿 第 1 章
ARM11之前的处理器和指令集架构
ARM11芯片之前,每一个芯片对应的架构关系如下:
ARM11之后处理器和指令集架构
ARM11芯片之后,也就是从ARMv7架构开始,ARM的命名方式有所改变。
新的处理器家族,改以Cortex命名,并分为三个系列,分别是Cortex-A,Cortex-R,Cortex-M。
很巧合,又是这三个字母A、R、M。
Cortex-A系列(A:Application)
针对日益增长的消费娱乐和无线产品设计,用于具有高计算要求、运行丰富操作系统及提供交互媒体和图形体验的应用领域,如智能手机、平板电脑、汽车娱乐系统、数字电视,智能本、电子阅读器、家用网络、家用网关和其他各种产品。。
Cortex-R系列 (R:Real-time)
针对需要运行实时操作的系统应用,面向如汽车制动系统、动力传动解决方案、大容量存储控制器等深层嵌入式实时应用。
Cortex-M系列(M:Microcontroller)
该系列面向微控制器领域,主要针对成本和功耗敏感的应用,如智能测量、人机接口设备、汽车和工业控制系统、家用电器、消费性产品和医疗器械等。
Cortex-SC系列(SC:SecurCore)
其实,除了上述三大系列之外,还有一个主打安全的Cortex-SC系列(SC:SecurCore),主要用于政府安全芯片。
一、现在先区分下ARM指令集与Thumb指令集
Thumb 指令可以看作是 ARM 指令压缩形式的子集,是针对代码密度的问题而提出的,它具有 16 位的代码密度但是它不如ARM指令的效率高 .Thumb 不是一个完整的体系结构,不能指望处理只执行Thumb 指令而不支持 ARM 指令集.因此,Thumb 指令只需要支持通用功能,必要时可以借助于完善的 ARM 指令集,比如,所有异常自动进入 ARM 状态.在编写 Thumb 指令时,先要使用伪指令 CODE16 声明,而且在 ARM 指令中要使用 BX指令跳转到 Thumb 指令,以切换处理器状态.编写 ARM 指令时,则可使用伪指令 CODE32声明.
流水线处理:
不同于微编码的处理器,ARM (保持它的 RISC 性)是完全硬布线的。
为了加速 ARM 2 和 3 的执行使用 3 阶段流水线。第一阶段持有从内存中取回的指令。第二阶段开始解码,而第三阶段实际执行它。故此,程序计数器总是超出当前执行的指令两个指令。(在为分支指令计算偏移量时必须计算在内)。
因为有这个流水线,在分支时丢失 2 个指令周期(因为要重新添满流水线)。所以最好利用条件执行指令来避免浪费周期。例如:
...
CMP R0,#0
BEQ over
MOV R1,#1
MOV R2,#2
over
...
可以写为更有效的:
...
CMP R0,#0
MOVNE R1,#1
MOVNE R2,#2
二、Thumb 指令集与 ARM 指令集的区别
Thumb 指令集没有协处理器指令,信号量指令以及访问 CPSR 或 SPSR 的指令,没有乘加指令及 64 位乘法指令等,且指令的第二操作数受到限制;除了跳转指令 B 有条件执行功能外,其它指令均为无条件执行;大多数 Thumb 数据处理指令采用 2 地址格式.Thumb指令集与 ARM 指令的区别一般有如下几点:
跳转指令
程序相对转移,特别是条件跳转与 ARM 代码下的跳转相比,在范围上有更多的限制,转向子程序是无条件的转移.
数据处理指令
数据处理指令是对通用寄存器进行操作,在大多数情况下,操作的结果须放入其中一个操作数寄存器中,而不是第 3 个寄存器中.数据处理操作比 ARM 状态的更少,访问寄存器 R8~R15 受到一定限制.除 MOV 和 ADD 指令访问器 R8~R15 外,其它数据处理指令总是更新 CPSR 中的 ALU 状态标志.访问寄存器 R8~R15 的 Thumb 数据处理指令不能更新 CPSR 中的 ALU 状态标志.
单寄存器加载和存储指令
在 Thumb 状态下,单寄存器加载和存储指令只能访问寄存器 R0~R7
批量寄存器加载和存储指令
LDM 和 STM 指令可以将任何范围为 R0~R7 的寄存器子集加载或存储. PUSH 和 POP 指令使用堆栈指令 R13 作为基址实现满递减堆栈.除 R0~R7 外,PUSH 指令还可以存储链接寄存器 R14,并且 POP 指令可以加载程序指令PC
ARM指令分为以下几种:
一、ARM 存储器访问指令
助记符 说明 操作 条件码位置
LDR Rd,addressing 加载字数据 Rd←[addressing],addressing 索引 LDR{cond}
LDRB Rd,addressing 加载无符字节数据 Rd←[addressing],addressing 索引 LDR{cond}B
LDRT Rd,addressing 以用户模式加载字数据 Rd←[addressing],addressing 索引 LDR{cond}T
LDRBT Rd,addressing 以用户模式加载无符号字数据 Rd←[addressing],addressing 索引 LDR{cond}BT
LDRH Rd,addressing 加载无符半字数据 Rd←[addressing],addressing 索引 LDR{cond}H
LDRSB Rd,addressing 加载有符字节数据 Rd←[addressing],addressing 索引 LDR{cond}SB
LDRSH Rd,addressing 加载有符半字数据 Rd←[addressing],addressing 索引 LDR{cond}SH
STR Rd,addressing 存储字数据 [addressing]←Rd,addressing 索引 STR{cond}
STRB Rd,addressing 存储字节数据 [addressing]←Rd,addressing 索引 STR{cond}B
STRT Rd,addressing 以用户模式存储字数据 [addressing]←Rd,addressing 索引 STR{cond}T
SRTBT Rd,addressing 以用户模式存储字节数据 [addressing]←Rd,addressing 索引 STR{cond}BT
STRH Rd,addressing 存储半字数据 [addressing]←Rd,addressing 索引 STR{cond}H
LDM{mode} Rn{!},reglist 批量(寄存器)加载 reglist←[Rn…],Rn 回存等 LDM{cond}{more}
STM{mode} Rn{!},rtglist 批量(寄存器)存储 [Rn…]← reglist,Rn 回存等 STM{cond}{more}
SWP Rd,Rm,Rn 寄存器和存储器字数据交换 Rd←[Rd],[Rn]←[Rm](Rn≠Rd 或 Rm) SWP{cond}
SWPB Rd,Rm,Rn 寄存器和存储器字节数据交换 Rd←[Rd],[Rn]←[Rm](Rn≠Rd 或 Rm) SWP{cond}B
二、ARM 数据处理指令
助记符号 说明 操作 条件码位置
MOV Rd ,operand2 数据转送 Rd←operand2 MOV {cond}{S}
MVN Rd ,operand2 数据非转送 Rd←(operand2) MVN {cond}{S}
ADD Rd,Rn operand2 加法运算指令 Rd←Rn+operand2 ADD {cond}{S}
SUB Rd,Rn operand2 减法运算指令 Rd←Rn-operand2 SUB {cond}{S}
RSB Rd,Rn operand2 逆向减法指令 Rd←operand2-Rn RSB {cond}{S}
ADC Rd,Rn operand2 带进位加法 Rd←Rn+operand2+carry ADC {cond}{S}
SBC Rd,Rn operand2 带进位减法指令 Rd←Rn-operand2-(NOT)Carry SBC {cond}{S}
RSC Rd,Rn operand2 带进位逆向减法指令 Rd←operand2-Rn-(NOT)Carry RSC {cond}{S}
AND Rd,Rn operand2 逻辑与操作指令 Rd←Rn&operand2 AND {cond}{S}
ORR Rd,Rn operand2 逻辑或操作指令 Rd←Rn|operand2 ORR {cond}{S}
EOR Rd,Rn operand2 逻辑异或操作指令 Rd←Rn^operand2 EOR {cond}{S}
BIC Rd,Rn operand2 位清除指令 Rd←Rn&(~operand2) BIC {cond}{S}
CMP Rn,operand2 比较指令 标志 N、Z、C、V←Rn-operand2 CMP {cond}
CMN Rn,operand2 负数比较指令 标志 N、Z、C、V←Rn+operand2 CMN {cond}
TST Rn,operand2 位测试指令 标志 N、Z、C、V←Rn&operand2 TST {cond}
TEQ Rn,operand2 相等测试指令 标志 N、Z、C、V←Rn^operand2 TEQ {cond}
三、乘法指令
具有 32×32 乘法指令,32×32 乘加指令,32×32 结果为 64 位的乘/乘法指令.
助记符 说明 操作 条件码位置
MUL Rd,Rm,Rs 32 位乘法指令 Rd←Rm*Rs (Rd≠Rm) MUL{cond}{S}
MLA Rd,Rm,Rs,Rn 32 位乘加指令 Rd←Rm*Rs+Rn (Rd≠Rm) MLA{cond}{S}
UMULL RdLo,RdHi,Rm,Rs 64 位无符号乘法指令 (RdLo,RdHi)←Rm*Rs UMULL{cond}{S}
UMLAL RdLo,RdHi,Rm,Rs 64 位无符号乘加指令 (RdLo,RdHi)←Rm*Rs+(RdLo,RdHi) UMLAL{cond}{S}
SMULL RdLo,RdHi,Rm,Rs 64 位有符号乘法指令 (RdLo,RdHi)←Rm*Rs SMULL{cond}{S}
SMLAL RdLo,RdHi,Rm,Rs 64 位有符号乘加指令 (RdLo,RdHi)←Rm*Rs+(RdLo,RdHi) SMLAL{cond}{S}
四、跳转指令
在 ARM 中有两种方式可以实现程序的跳转,一种是使用跳转指令直接跳转,另一种则是直接向 PC 寄存器赋值实现跳转.
助记符 说明 操作 条件码位置
B label 跳转指令 Pc←label B{cond}
BL label 带链接的跳转指令 LR←PC-4, PC←label BL{cond}
BX Rm 带状态切换的跳转指令 PC←label,切换处理状态 BX{cond}
五、ARM协处理器指令
ARM 支持协处理器操作,协处理器的控制要通过协处理器命令实现.
助记符 说明 操作 条件码位置
CDP
coproc,opcodel,CRd,CRn,CRm{,opcode2} 协处理器数据操作指令 取决于协处理器 CDP{cond}
LDC{L} coproc,CRd〈地址〉 协处理器数据读取指令 取决于协处理器 LDC{cond}{L}
STC{L} coproc,CRd,〈地址〉 协处理器数据写入指令 取决于协处理器 STC{cond}{L}
ARM 寄存器到协处理器
MCR coproc, opcodel,Rd,CRn,{,opcode2} 寄存器的数据传送指令 取决于协处理器 MCR{cond}
上一篇:ARM开发环境KEIL和IAR设置堆栈的占用空间大小
下一篇:arm指令之beq和bnq
推荐阅读最新更新时间:2024-11-17 06:29
设计资源 培训 开发板 精华推荐
- ADR441A 2.5 Vout 超低噪声、LDO XFET 电压基准和电流吸收器和电流源的典型应用
- LT1074HVCT7 抽头电感降压转换器的典型应用
- EVAL-ADuM4120EBZ,用于具有 2A 输出的 ADuM4120 隔离式精密栅极驱动器的评估板
- unsurv offline:开源、隐私、紧凑型 GNSS 接收器,带有 ESP32 和 NFC(原理图和PCB等)
- 用于闪光灯相机的 2-LED 闪光灯 LED 驱动器
- 太阳能追光系统
- LTC4263-1 的典型应用 - 具有内部开关的高功率单 PSE 控制器
- LTC2862AHDD-2 网络的典型应用,用于针对 5kV 浪涌、5kV EFT 和 30kV IEC ESD Plus ±360V 过压保护的 IEC 4 级保护
- ESP32DUINO
- 基于 ADuM4160 的通用串行总线 (USB) 外围隔离器电路