STM32大小端模式与堆栈及其增长方向

发布者:luanzgc最新更新时间:2022-07-19 来源: csdn关键字:STM32  大小端模式  堆栈  增长方向 手机看文章 扫描二维码
随时随地手机看文章

栈增长和大端/小端问题是和CPU相关的两个问题.

1,首先来看:栈(STACK)的问题.

函数的局部变量,都是存放在"栈"里面,栈的英文是:STACK.STACK的大小,我们可以在stm32的启动文件里面设置,以战舰stm32开发板为例,在startup_stm32f10x_hd.s里面,开头就有:

Stack_Size      EQU     0x00000800

表示栈大小是0X800,也就是2048字节.这样,CPU处理任务的时候,函数局部变量做多可占用的大小就是:2048字节,注意:是所有在处理的函数,包括函数嵌套,递归,等等,都是从这个"栈"里面,来分配的.


所以,如果一个函数的局部变量过多,比如在函数里面定义一个u8 buf[512],这一下就占了1/4的栈大小了,再在其他函数里面来搞两下,程序崩溃是很容易的事情,这时候,一般你会进入到hardfault....


这是初学者非常容易犯的一个错误.切记不要在函数里面放N多局部变量,尤其有大数组的时候!

对于栈区,一般栈顶,也就是MSP,在程序刚运行的时候,指向程序所占用内存的最高地址.比如附件里面的这个程序序,内存占用如下图:


图中,我们可以看到,程序总共占用内存:20+2348字节=2368=0X940
那么程序刚开始运行的时候:MSP=0X2000 0000+0X940=0X2000 0940.
事实上,也是如此,如图:

 


图中,MSP就是:0X2000 0940.
程序运行后,MSP就是从这个地址开始,往下给函数的局部变量分配地址.

再说说栈的增长方向,我们可以用如下代码测试: 

//保存栈增长方向
//0,向下增长;1,向上增长.
static u8 stack_dir;

//查找栈增长方向,结果保存在stack_dir里面.
void find_stack_direction(void)
{
    static u8 *addr=NULL; //用于存放第一个dummy的地址。
    u8 dummy;               //用于获取栈地址 
    if(addr==NULL)    //第一次进入
    {                          
        addr=&dummy;     //保存dummy的地址
        find_stack_direction ();  //递归 
    }else                //第二次进入 
 {  
        if(&dummy>addr)stack_dir=1; //第二次dummy的地址大于第一次dummy,那么说明栈增长方向是向上的. 
        else stack_dir=0;           //第二次dummy的地址小于第一次dummy,那么说明栈增长方向是向下的.  
 }


这个代码不是我写的,网上抄来的,思路很巧妙,利用递归,判断两次分配给dummy的地址,来比较栈是向下生长,还是向上生长.
如果你在STM32测试这个函数,你会发现,STM32的栈,是向下生长的.事实上,一般CPU的栈增长方向,都是向下的.

2,再来说说,堆(HEAP)的问题.

全局变量,静态变量,以及内存管理所用的内存,都是属于"堆"区,英文名:"HEAP"
与栈区不同,堆区,则从内存区域的起始地址,开始分配给各个全局变量和静态变量.
堆的生长方向,都是向上的.在程序里面,所有的内存分为:堆+栈. 只是他们各自的起始地址和增长方向不同,他们没有一个固定的界限,所以一旦堆栈冲突,系统就到了崩溃的时候了.
同样,我们用附件里面的例程测试:



stack_dir的地址是0X20000004,也就是STM32的内存起始端的地址.
这里本来应该是从0X2000 0000开始分配的,但是,我仿真发现0X2000 0000总是存放:0X2000 0398,这个值,貌似是MSP,但是又不变化,还请高手帮忙解释下.
其他的,全局变量,则依次递增,地址肯定大于0X20000004,比如cpu_endian的地址就是0X20000005.
这就是STM32内部堆的分配规则.

3,再说说,大小端的问题.
大端模式:低位字节存在高地址上,高位字节存在低地址上 
小端模式:高位字节存在高地址上,低位字节存在低地址上

STM32属于小端模式,简单的说,比如u32 temp=0X12345678;
假设temp地址在0X2000 0010.
那么在内存里面,存放就变成了:
地址              |            HEX         |
0X2000 0010  |  78   56   43  12  |

CPU到底是大端还是小端,可以通过如下代码测试:
//CPU大小端
//0,小端模式;1,大端模式.
static u8 cpu_endian;

//获取CPU大小端模式,结果保存在cpu_endian里面
void find_cpu_endian(void)

 int x=1;
 if(*(char*)&x==1)cpu_endian=0; //小端模式 
 else cpu_endian=1;    //大端模式  
}
以上测试,在STM32上,你会得到cpu_endian=0,也就是小端模式.


3,最后说说,STM32内存的问题.
    还是以附件工程为例,在前面第一个图,程序总共占用内存:20+2348字节,这么多内存,到底是怎么得来的呢?
我们可以双击Project侧边栏的:Targt1,会弹出test.map,在这个里面,我们就可以清楚的知道这些内存到底是怎么来的了.在这个test.map最后,Image 部分有:
==============================================================================

Image component sizes


      Code (inc. data)   RO Data    RW Data    ZI Data      Debug   Object Name

       172         10          0          4          0        995   delay.o//delay.c里面,fac_us和fac_ms,共占用4字节
       112         12          0          0          0        427   led.o
        72         26        304          0       2048        828   startup_stm32f10x_hd.o  //启动文件,里面定义了Stack_Size为0X800,所以这里是2048.
       712         52          0          0          0       2715   sys.o
       348        154          0          6          0     208720   test.o//test.c里面,stack_dir和cpu_endian 以及*addr  ,占用6字节.
       384         24          0          8        200       3050   usart.o//usart.c定义了一个串口接收数组buffer,占用200字节.

    ----------------------------------------------------------------------
      1800        278        336         20       2248     216735   Object Totals //总共2248+20字节
         0          0         32          0          0          0   (incl. Generated)
         0          0          0          2          0          0   (incl. Padding)//2字节用于对其

    ----------------------------------------------------------------------

      Code (inc. data)   RO Data    RW Data    ZI Data      Debug   Library Member Name

         8          0          0          0          0         68   __main.o
       104          0          0          0          0         84   __printf.o
        52          8          0          0          0          0   __scatter.o
        26          0          0          0          0          0   __scatter_copy.o
        28          0          0          0          0          0   __scatter_zi.o
        48          6          0          0          0         96   _printf_char_common.o
        36          4          0          0          0         80   _printf_char_file.o
        92          4         40          0          0         88   _printf_hex_int.o
       184          0          0          0          0         88   _printf_intcommon.o
         0          0          0          0          0          0   _printf_percent.o
         4          0          0          0          0          0   _printf_percent_end.o
         6          0          0          0          0          0   _printf_x.o
        12          0          0          0          0         72   exit.o
         8          0          0          0          0         68   ferror.o
         6          0          0          0          0        152   heapauxi.o
         2          0          0          0          0          0   libinit.o
         2          0          0          0          0          0   libinit2.o
         2          0          0          0          0          0   libshutdown.o
         2          0          0          0          0          0   libshutdown2.o
         8          4          0          0         96         68   libspace.o          //库文件(printf使用),占用了96字节
        24          4          0          0          0         84   noretval__2printf.o
         0          0          0          0          0          0   rtentry.o
        12          0          0          0          0          0   rtentry2.o
         6          0          0          0          0          0   rtentry4.o
         2          0          0          0          0          0   rtexit.o
        10          0          0          0          0          0   rtexit2.o
        74          0          0          0          0         80   sys_stackheap_outer.o
         2          0          0          0          0         68   use_no_semi.o
         2          0          0          0          0         68   use_no_semi_2.o
       450          8          0          0          0        236   faddsub_clz.o
       388         76          0          0          0         96   fdiv.o
        62          4          0          0          0         84   ffixu.o
        38          0          0          0          0         68   fflt_clz.o
       258          4          0          0          0         84   fmul.o
       140          4          0          0          0         84   fnaninf.o
        10          0          0          0          0         68   fretinf.o
         0          0          0          0          0          0   usenofp.o

[1] [2]
关键字:STM32  大小端模式  堆栈  增长方向 引用地址:STM32大小端模式与堆栈及其增长方向

上一篇:STM32芯片型号的命名规则
下一篇:stm32 HAL 库 串口开关 串口接收开关

推荐阅读最新更新时间:2024-11-12 22:39

STM32单片机串口空闲中断接收不定长数据
在使用单片机的串口通信功能时,常用的接收数据方法是通过固定的字节数来判断一帧数是否发送完成,或者是通过固定的结束标志位来表示一帧数据发送完成。但是有时候会遇到发送的数据长度不固定,也没有固定的结束标志,对于这样的数据通常的做法是每隔一段时间查看一下接收数据的长度是否发生了变化,如果指定的一段时间内接收数据长度没有发生变化,就认为是一帧数据发送完成。在STM32单片机中串口提供了一个更好用的功能,就是空闲中断功能。也就是说当一帧数据发送结束后,就会产生一个空闲中断。这样就可以利用这个空闲中断来判断一帧数据接收是否完成。 关于串口空闲检测可以在STM32参考手册上找到相关介绍 通过这个图可以看出来,当第一组数据Data1、Da
[单片机]
<font color='red'>STM32</font>单片机串口空闲中断接收不定长数据
STM32学习14:EXTI(外部中断事件控制器)
EXTI管理了控制器的23个中断/事件线。每个中断/事件线都对应有一个边沿检测器,可以实现输入信号的上升沿检测和下降沿的检测。EXTI可以实现对每个中断/事件线进行单独配置,可以单独配置为中断或者事件,以及触发事件的属性。 编程思路: 1、配置NVIC。初始化NVIC(实现过程:先初始化NVIC结构体,再写NVICInit()函数)。 2、配置按键中断。在这个函数中,因为我们要使用IO口作为中断输入, 所以第一步我们要使能相应的IO时钟。(因为GPIO 和中断线映射关系是在寄存器 SYSCFG_EXTICR1~ SYSCFG_EXTICR4 中配置的。所以我们要配置外部中断,还需要打开 SYSCFG 时钟
[单片机]
<font color='red'>STM32</font>学习14:EXTI(外部中断事件控制器)
STM32 端口复用&重映射
下面跟大家说一下STM32单片机的端口重映射,因为是以自己为实例.这里是以USART1的重映射为例.. 因为我要一个TFT_LCD屏的主控板,考虑到FSMC 我选用了STM32F103VCT6 型号的CPU,一不小心串口接到USART1上了.因为在调程序时才发现错了,没得办法,只能通过端口重映射来解决.但是以前没用过端口重映射,只闻其名,未用其身,所以..呵呵 ...只能从头去看了. STM32上有很多I/O口,也有很多的内置外设想I2C,ADC,ISP,USART等,为了节省引出管脚,这些内置外设基本上是与I/O口共用管脚的,也就是I/O管脚的复用功能。但是STM32还有一特别之处就是:很多复用内置的外设的I/O引脚可以通过
[单片机]
<font color='red'>STM32</font> 端口复用&重映射
意法半导体STM32 USB PD MCU 现支持 UCSI 规范,加快Type-C供电广泛应用
2023 年 7 月 24 日,中国 —— 意法半导体STM32 微控制器 (MCU)软件生态系统 STM32Cube新增一个USB Type-C® 连接器系统接口(UCSI)软件库,加快USB-C供电(PD)应用的开发。 X-CUBE-UCSI是一款UCSI 认证的总包整体方案,组件包含即用型硬件和使用STM32 MCU充当UCSI PD控制器实现标准化通信的固件示例。 客户可以直接复制粘贴这些参考设计,并从优化的物料清单(BoM)成本中受益。 该软件允许 MCU 连接系统主处理器,使用 UCSI 协议与操作系统交换信息,同时控制 USB-C 连接和 PD 协议。主处理器可以是系统芯片(SoC)、应用处理器或 S
[单片机]
意法半导体<font color='red'>STM32</font> USB PD MCU 现支持 UCSI 规范,加快Type-C供电广泛应用
STM32库函数详解----(通用输入/输出GPIO)
初始化和配置相关函数 1.void GPIO_DeInit (GPIO_TypeDef* GPIOx) 函数解释:gpio的反初始化函数,该函数的作用是把GPIO相关的寄存器配置成上电复位后的默认状态,在第一次初始化前或者不在使用某一接口后,可以调用该函数。 参数:GPIOx,GPIO的分组,如 GPIOA,GPIOB,GPIOC等的宏定义。 2.void GPIO_Init (GPIO_TypeDef* GPIOx,GPIO_InitTypeDef* GPIO_InitStruct) 函数解释:GPIO的初始化函数,该函数的作用是对io进行初始化。 参数:(1)GPIOx,GPIO的分组,如 GPI
[单片机]
如何利用stm32单片机进行超声波测距
首先来看模块图 在某宝上一搜就能找到,关于它的使用也是非常简单,先看数据手册里面需要注意的几点 1 基本的参数 在实际测试当中,最大测量三米多的距离还是可以,最小距离我没有做测试,我测的最小距离是50厘米,再往下没有继续测。 2测距的基本原理 这里的基本原理其实应该是它的使用方法,如果你仔细看它的数据手册会发现这种测距模块还有另外一种使用方法:USART通信。 看文字不是很直观,简单粗暴来看图 在写程序的时候没有使用USART的方法,因为上图的这种驱动方式我认为比较简单,后面的程序也是按照这个时序图来编写的。 注意:上图中关于测距的公式,在程序中我没有使用他给的公式,这一点在后面会提到。 3 实物图的连接 实物图
[单片机]
如何利用<font color='red'>stm32</font>单片机进行超声波测距
difference for STM32 adc Regular and injected
STM32的每个ADC模块通过内部的模拟多路开关,可以切换到不同的输入通道并进行转换。STM32特别地加入了多种成组转换的模式,可以由程序设置好之后,对多个模拟通道自动地进行逐个地采样转换。 有2种划分转换组的方式:规则通道组和注入通道组。通常规则通道组中可以安排最多16个通道,而注入通道组可以安排最多4个通道。 在执行规则通道组扫描转换时,如有例外处理则可启用注入通道组的转换。 内容来自电气自动化技术网 一个不太恰当的比喻是:规则通道组的转换好比是程序的正常执行,而注入通道组的转换则好比是程序正常执行之外的一个中断处理程序。 再举一个不一定使用的例子: 假如你在家里的院子内放了5个温度探头,室内放了3个温度探
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved