STM32之学习笔记--串口通信

发布者:脑洞飞扬最新更新时间:2022-12-27 来源: zhihu关键字:STM32  学习笔记  串口通信 手机看文章 扫描二维码
随时随地手机看文章

  在基础实验成功的基础上,对串口的调试方法进行实践。硬件代码顺利完成之后,对日后调试需要用到的printf重定义进行调试,固定在自己的库函数中。


  b) 初始化函数定义:


  void USART_Configuration(void); //定义串口初始化函数

  c) 初始化函数调用:


  void UART_Configuration(void); //串口初始化函数调用

  初始化代码:


  void USART_Configuration(void) //串口初始化函数

  {

  //串口参数初始化

  USART_InitTypeDef USART_InitStructure; //串口设置恢复默认参数

  //初始化参数设置

  USART_InitStructure.USART_BaudRate = 9600; //波特率9600

  USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长8位

  USART_InitStructure.USART_StopBits = USART_StopBits_1; //1位停止字节

  USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验

  USART_InitStructure.USART_HardwareFlowControl =  USART_HardwareFlowControl_None;//无流控制

  USART_InitStructure.USART_Mode = USART_Mode_Rx |  USART_Mode_Tx;//打开Rx接收和Tx发送功能

  USART_Init(USART1, &USART_InitStructure); //初始化

  USART_Cmd(USART1, ENABLE); //启动串口

  }

  RCC中打开相应串口


  RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 , ENABLE);

  GPIO里面设定相应串口管脚模式


  //串口1的管脚初始化

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //管脚9

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出

  GPIO_Init(GPIOA, &GPIO_InitStructure); //TX初始化

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //管脚10

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入

  GPIO_Init(GPIOA, &GPIO_InitStructure); //RX初始化

  d) 简单应用:


  发送一位字符


  USART_SendData(USART1, 数据); //发送一位数据

  while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){} //等待发送完毕

  接收一位字符


  while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET){} //等待接收完毕

  变量= (USART_ReceiveData(USART1)); //接受一个字节


  发送一个字符串


  先定义字符串:char rx_data[250];


  然后在需要发送的地方添加如下代码


  int i; //定义循环变量

  while(rx_data!='') //循环逐字输出,到结束字''

  {USART_SendData(USART1, rx_data); //发送字符

  while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){}  //等待字符发送完毕

  i++;}

  e) USART注意事项:


  发动和接受都需要配合标志等待。


  只能对一个字节操作,对字符串等大量数据操作需要写函数


  使用串口所需设置:RCC初始化里面打开RCC_APB2PeriphClockCmd


  (RCC_APB2Periph_USARTx);GPIO里面管脚设定:串口RX(50Hz,IN_FLOATING);串口TX(50Hz,AF_PP);


  f) printf函数重定义(不必理解,调试通过以备后用)


  (1) 需要c标准函数:


  #include "stdio.h"

  (2) 粘贴函数定义代码


  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) //定义为putchar应用

  (3) RCC中打开相应串口


  (4) GPIO里面设定相应串口管脚模式


  (6) 增加为putchar函数。


  int putchar(int c) //putchar函数

  {

  if (c == 'n'){putchar('r');} //将printf的n变成r

  USART_SendData(USART1, c); //发送字符

  while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){} //等待发送结束

  return c; //返回值

  }

  (8) 通过,试验成功。printf使用变量输出:%c字符,%d整数,%f浮点数,%s字符串,/n或/r为换行。注意:只能用于main.c中。


  3、 NVIC串口中断的应用


  a) 目的:利用前面调通的硬件基础,和几个函数的代码,进行串口的中断输入练习。因为在实际应用中,不使用中断进行的输入是效率非常低的,这种用法很少见,大部分串口的输入都离不开中断。


  b) 初始化函数定义及函数调用:不用添加和调用初始化函数,在指定调试地址的时候已经调用过,在那个NVIC_Configuration里面添加相应开中断代码就行了。


  c) 过程:


  i. 在串口初始化中USART_Cmd之前加入中断设置:


  USART_ITConfig(USART1, USART_IT_TXE, ENABLE);//TXE发送中断,TC传输完成中断,RXNE接收中断,PE奇偶错误中断,可以是多个。


  ii. RCC、GPIO里面打开串口相应的基本时钟、管脚设置


  iii. NVIC里面加入串口中断打开代码:


  NVIC_InitTypeDef NVIC_InitStructure;//中断默认参数

  NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQChannel;//通道设置为串口1中断

  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //中断占先等级0

  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //中断响应优先级0

  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //打开中断

  NVIC_Init(&NVIC_InitStructure); //初始化

  iv. 在stm32f10x_it.c文件中找到void USART1_IRQHandler函数,在其中添入执行代码。一般最少三个步骤:先使用if语句判断是发生那个中断,然后清除中断标志位,最后给字符串赋值,或做其他事情。


  void USART1_IRQHandler(void) //串口1中断

  {

  char RX_dat; //定义字符变量

  if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //判断发生接收中断

  {USART_ClearITPendingBit(USART1, USART_IT_RXNE); //清除中断标志

  GPIO_WriteBit(GPIOB, GPIO_Pin_10, (BitAction)0x01); //开始传输

  RX_dat=USART_ReceiveData(USART1) & 0x7F; //接收数据,整理除去前两位

  USART_SendData(USART1, RX_dat); //发送数据

  while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET){}//等待发送结束

  }

  }

  d) 中断注意事项:


  可以随时在程序中使用USART_ITConfig(USART1, USART_IT_TXE, DISABLE);来关闭中断响应。


  NVIC_InitTypeDef NVIC_InitStructure定义一定要加在NVIC初始化模块的第一句。


  全局变量与函数的定义:在任意.c文件中定义的变量或函数,在其它.c文件中使用extern+定义代码再次定义就可以直接调用了。


  STM32笔记之九:打断它来为我办事,EXIT (外部I/O中断)应用


  a) 目的:跟串口输入类似,不使用中断进行的IO输入效率也很低,而且可以通过EXTI插入按钮事件,本节联系EXTI中断。


  b) 初始化函数定义:


  void EXTI_Configuration(void); //定义IO中断初始化函数

  c) 初始化函数调用:


  EXTI_Configuration();//IO中断初始化函数调用简单应用:

  d) 初始化函数:


  void EXTI_Configuration(void)

  { EXTI_InitTypeDef EXTI_InitStructure; //EXTI初始化结构定义

  EXTI_ClearITPendingBit(EXTI_LINE_KEY_BUTTON);//清除中断标志

  GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource3);//管脚选择

  GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource4);

  GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource5);

  GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource6);

  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;//事件选择

  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;//触发模式

  EXTI_InitStructure.EXTI_Line = EXTI_Line3 | EXTI_Line4; //线路选择

  EXTI_InitStructure.EXTI_LineCmd = ENABLE;//启动中断

  EXTI_Init(&EXTI_InitStructure);//初始化

  }

  e) RCC初始化函数中开启I/O时钟


  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);


  GPIO初始化函数中定义输入I/O管脚。


  //IO输入,GPIOA的4脚输入

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入

  GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化

  f) 在NVIC的初始化函数里面增加以下代码打开相关中断:


  NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQChannel; //通道

  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;//占先级

  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应级

  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //启动

  NVIC_Init(&NVIC_InitStructure); //初始化

  g) 在stm32f10x_it.c文件中找到void USART1_IRQHandler函数,在其中添入执行代码。一般最少三个步骤:先使用if语句判断是发生那个中断,然后清除中断标志位,最后给字符串赋值,或做其他事情。


  if(EXTI_GetITStatus(EXTI_Line3) != RESET) //判断中断发生来源

  { EXTI_ClearITPendingBit(EXTI_Line3); //清除中断标志

  USART_SendData(USART1, 0x41); //发送字符“a”

  GPIO_WriteBit(GPIOB, GPIO_Pin_2,  (BitAction)(1-GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_2)));//LED发生明暗交替

  }

  h) 中断注意事项:


  中断发生后必须清除中断位,否则会出现死循环不断发生这个中断。然后需要对中断类型进行判断再执行代码。


  使用EXTI的I/O中断,在完成RCC与GPIO硬件设置之后需要做三件事:初始化EXTI、NVIC开中断、编写中断执行代码。


  -----------------------------------------------------------------------------------


  补充


  上边的不足之处就是无法发送char类型数据,是u16类型的,会报错


  后续可以更换为3.5的固件库,


  d) 简单应用中


  超级简单应用只可以发送u16类型数据


  下面发送char数组时,


  “{USART_SendData(USART1, rx_data);、、” 中rx_data需要改为


  rx_data[i]才可以,不然就会报错数据类型不匹配,


关键字:STM32  学习笔记  串口通信 引用地址:STM32之学习笔记--串口通信

上一篇:STM32中USART 串口简单使用
下一篇:STM32 PWM功能在关闭时GPIO电平不确定的情况

推荐阅读最新更新时间:2024-11-06 10:46

stm32库函数GPIO_Init()解析
GPIO_Init函数是IO引脚的初始化函数,进行个个引脚的初始化配置,主要接受两个参数,一个是配置引脚组(GPIO_TypeDef* GPIOx),一个是配置的参数( GPIO_InitTypeDef* GPIO_InitStruct),具体如下 void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct) /*其中第一个参数为那组引脚,每组拥有16个引脚,每组都具有不同的寄存器配置地址,第二个参数是一个数据结构,也就是将基本配置信息放在这个数据结构里面,再将这个结构传入函数进行配置*/ //其中数据机构可以表示为如下 typedef str
[单片机]
stm32的swd接口的烧写协议是否公开的呢?
需要用一台好的示波器来抓才能有足够的存储深度,保证你能够过滤掉那个该死的50clock。 按照Arm的手册,每次转换发送方都需要一个TNR---但是我观察JLINK的波形却没有那个该死的TNR。 手册中说异步SWD需要,同步不需要----或者相反,但是我没有找到关于同步异步的描述。 姑且不管他,反正目前忽略掉TNR就能够读到该死IDR。 另外JLINK的复位时序很奇怪,大致是 70clk High,0xe79e(注意,SWD是LSB First), 70clk High,0xedb6(这里很奇怪,找不到描述), 70clkHigh,16clk Low,0xa5, 注意这里按照协议应该是TNR位-但是没有实际观测到这个位, 0b10
[单片机]
STM32开发笔记48:STM32F4+DP83848以太网通信指南系列(二):系
本章为系列指南第二章,主要是介绍一下STM32F4的时钟配置。时钟是一个嵌入式产品从零开始开发的基石,一切逻辑都在时钟的节奏中安静地弹奏着,时钟为整个电路带来了欢快的「心跳」。开发者如果对时钟没有控制能力,就会把脉不准整个旋律的节奏,从而导致诸如通信波特率、通信时序、延时操作等关键功能全都紊乱,系统的构建也就无从谈起。 时钟如此重要,那么普通开发者,需要对时钟有多深的认知呢?STM32F4的时钟配置到底复不复杂?几行代码能搞定? 不要着急,我下面将用最简单的白话文来剖析STM32的时钟系统。不过在这之前,我们应该先吃一颗定心丸,因为在STM32中配置时钟是非常简单的,简单到我们甚至不需要写一行代码就能配置好,因为从标准库3.5版本
[单片机]
<font color='red'>STM32</font>开发<font color='red'>笔记</font>48:STM32F4+DP83848以太网通信指南系列(二):系
STM32L1学习笔记05 串口校验位与数据位的一个坑
引言 今天被一个坑给坑了,难以平静,记录下。 ST的HAL库串口结构体 UART_InitTypeDef 的 WordLength 不单单是指数据位! ST的HAL库串口结构体 UART_InitTypeDef 的 WordLength 不单单是指数据位! ST的HAL库串口结构体 UART_InitTypeDef 的 WordLength 不单单是指数据位! 气人的话说三遍! 如果你有用到了奇偶校验的话,一定要在数据位数再加1。血淋淋的教训,浪费了本尊半天的生命,分分钟几百万上下的宝贵时间,居然被这细节给绊倒了! 原因分析 ST的注释有误导嫌疑 uint32_t WordLength; /*! Specifie
[单片机]
S3C2440开发板裸机程序系列04—串口通信
1. S3C244串口概述 串口通讯一般要增加电平转换电路,原因是TTL/CMOS电平与RS232电平不一致: TTL/CMOS电平: CMOS电平: 常用的电平转换芯片是MAX3232。 S3C2440有3个独立的异步串口,可以选择工作在中断或DMA方式下。每个UART包括一个波特率发生器、发送器、接收器和一个控制单元。 UART有FIFO模式和非FIFO模式。FIFO模式下可以利用64字节的发送/接收缓冲寄存器,非FIFO模式下只使用了发送/接收缓冲寄存器中的1个字节。本篇入门级以非FIFO为例。 2. 串口设置及相关寄存器 串口引脚是GPIO复用的。本篇UART只用3根引脚:TXD
[单片机]
S3C2440开发板裸机程序系列04—<font color='red'>串口通信</font>
单片机串口通信中断
#include reg52.h //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 /*------------------------------------------------ 函数声明 ------------------------------------------------*/ void SendStr(unsigned char *s); /*------------------------------------------------ 串口初始化 -----------------------------
[单片机]
STM32的can现场总线的特点及工作流程分析
最近在搞stm32实验板的can现场总线实验,之前只是搞过STC51的串口通信,相比之下,发觉can总线都挺复杂的。开始时,知道自己是新手,只知道can总线跟串行通信,485通信,I2C通信一样都是用来传输数据通信的,对其工作原理一窍不通,还是从基础开始看书看资料,先了解它的基本原理吧。 原来can总线有以下特点: 主要特点 支持CAN协议2.0A和2.0B主动模式 波特率最高可达1兆位/秒 支持时间触发通信功能 发送 3个发送邮箱 发送报文的优先级特性可软件配置 记录发送SOF时刻的时间戳 接收 3级深度的2个接收FIFO 14个位宽可变的过滤器组-由整个CAN共享 标识符列表 FIFO溢出处理方式可配置 记录接
[单片机]
<font color='red'>STM32</font>的can现场总线的特点及工作流程分析
STM32-GPIO口设为外部中断时,中断函数名称
以A口为例,A0~A4中断函数名称为: void EXTI0_IRQHandler(void ); void EXTI1_IRQHandler(void ); void EXTI2_IRQHandler(void ); void EXTI3_IRQHandler(void ); A5~A9: void EXTI9_5_IRQHandler(void ); A10~A15: void EXTI15_10_IRQHandler(void );
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved