测试系统数字稳压电源的实现

发布者:心动代码最新更新时间:2023-01-11 来源: elecfans关键字:测试系统  数字稳压电源  S3C2440 手机看文章 扫描二维码
随时随地手机看文章

  引 言

  直流稳压电源是一种比较常见的电子设备,一直被广泛地应用在电子电路、实验教学、科学研究等诸多领域。数字稳压电源是用脉宽调制波(PWM)来控制MOS管等开关器件的开通和关闭,从而实现电压电流的稳定输出。数字稳压电源还具备自诊断功能,能实现过压过流保护、故障警告等。


  通过对所需求电源的分析,结合嵌入式控制技术,提出了一种基于S3C2440的测试系统数字稳压电源解决方案,以及实现该方案所采用的方法。该系统基于ARM 控制技术,对数据进行采样,运用适当的算法进行电压调节和电路保护,以达到为测试系统提供稳压电源的目的。设计的系统经过实际应用,所提供的电源稳定可靠,满足芯片测试所需电源的要求。在此给出了系统的硬件构架和软件设计流程图。


  1 测试系统数字稳压电源组成及工作原理

  数字稳压电源由主控制器、PWM 稳压电路、电压电流取样电路、PID控制器、触摸屏组成,系统原理框图如图1所示。

  

图1 系统原理框图

 

  图1 系统原理框图

  本电源对输出的电压电流信号进行采样,进行PID控制,最后输出PWM 驱动波形调节输出电压。输出电压提供给芯片测试平台,供其测试芯片时使用。


  前端交流电源输入到整流模块,经整流滤波后输出平稳的直流电压。该直流电压直接输出至IGBT模块。


  高精度A/D转换器将后端输出的电压电流信号由模拟信号量变为数字量供给S3C2440进行数字PID运算,经过PID 控制器运算后,由S3C2440输出PWM 至IGBT,从而构成一个闭环控制系统,控制电压电流稳定输出,从而实现数字稳压电源设计,提供给芯片测试系统使用。ARM 控制器通过触摸屏实现人机交互界面,在触摸屏上设置参数和显示信息。


  2 硬件设计

  2.1 ARM 控制系统组成


  2.2 PWM 稳压电路设计

  脉冲宽度调制(Pulse Width ModulaTIon,PWM)原理是PWM 调制信号对半导体功率开关器件的导通和关断进行控制,使输出端得到一些列幅值相等而宽度不相等的脉冲,经过处理后得到稳定的直流电压输出。


  PWM 调制信号由ARM 主控制器根据设定的电压值,按一定的规则对各脉冲宽度进行调制后给出脉冲信号。


  PWM 稳压电路如图2所示。

  

图2 PWM 稳压电路

 

  图2 PWM 稳压电路

  半导体功率开关器件其开关转换速度的快慢直接影响电源的转换效率和负载能力,本系统PWM 稳压电路中,驱动电路由电阻、电容、晶体管和场效应管组成,MOSFET是电压单极性金属氧化硅场效应晶体管,所需驱动功率很小,容易驱动。MOSFET的输入阻抗很高,其导通和关断就相当于输入电容充放电过程。根据所选器件的参数,计算出满足的条件,保证驱动电路提供足够大的过充电流,实现MOSFET 快速、可靠的开关。


  3 软件设计

  采用S3C2440为核心处理器,其丰富的片上资源和优秀的运算速度,保证了系统的实时性,编写软件主要以C语言进行驱动和应用程序的开发,其大容量存储器,完全能满足系统程序的数据存储。


  该测试系统中ARM 处理器所要实现的主要功能和软件实现方法如下。


  3.1 PWM 波产生

  PWM 用于对电路中IGBT 的驱动。根据输出采样,设定和调整定时器配置寄存器TCFGn 和定时器n计数缓存寄存器TCNTBn中的值来改变输出PWM 波的周期和脉冲宽度。修改TCNTBn的值可以控制PWM 波的占空比增加或减少1,PWM 输出占空比增加或者减少千分之一,可以达到千分之一的控制精度。


  3.2 监控和保护系统

  为了使数字稳压电源能够可靠、安全地为测试系统提供电压,该系统设置了监控和保护系统,主要用于过流保护和过压保护等,ARM 处理器对电压和电流采用双重检测,当电压电流超出所设定的危险值范围时,声光报警,并启动保护电路


  3.3 PID控制算法

  PID控制器由比例、积分、微分控制器组合,将测量的受控对象(在本系统中为电压电流值)与设定值相比较,用这个误差来调节系统的响应,以达到动态实时的控制过程。


  在数字稳压电源PID控制系统中,使用比例环节控制电压电流的输出与输入误差信号成比例改变,但是这里会存在一个稳态误差,即实际值与给定值间存在的偏差,因此需要引入积分环节来消除稳态误差以提高系统精度。但由于电源系统在导通、关断时,产生积分积累,会引起电压电流超调,甚至会出现震荡。为了减小这方面的影响,设定给定一个误差值范围,当电压电流与设定工作值的误差小于这一给定值时,采用积分环节去消除系统比例环节产生的稳态误差。PID控制算法设定阈值ε,当|e(k)|>ε时,采用PD控制环节,减少超调量,使系统有较快的响应;当|e(k)|<ε时,采用PID控制,以保证电压电流精度和稳定度。在电压达到千分之一精度范围后,需要加入积分环节,以完成电源开机时迅速稳定的输出。PID算法流程图如图3所示。

  

PID控制算法流程图

 

  图3 PID控制算法流程图。

  PID控制算法程序采用结构体定义:

  struct PID{

  unsigned int SetPoint; //设定目标Desired Value

  unsigned int ProporTIon; //比例常数ProporTIonal Const

  unsigned int Integral; //积分常数Integral Const

  unsigned int DerivaTIve; //微分常数Derivative Const

  unsigned int LastError; //Error[-1]

  unsigned int PrevError; //Error[-2]

  unsigned int SumError; //Sums of Errors

  }spid;

  在PID控制算法中,经过不断与给定值进行比较,动态控制电压电流输出的稳定,同时确保电压电流输出的精度。

  PID控制算法程序如下:

  unsigned int PIDCalc(struct PID *pp,unsigned int Next-Point)

  {

  unsigned int dError,Error;

  Error=pp->SetPoint-NextPoint; //偏差

  pp->SumError+= Error; //积分

  dError=pp->LastError-pp->PrevError; //当前微分

  pp->PrevError=pp->LastError;

  pp->LastError= Error;

  return(pp->Proportion* Error //比例

  +pp->Integral*pp->SumError //积分项

  +pp->Derivative*dError); //微分项

  }


  3.4 系统程序

  测试系统的整体程序流程图如图4所示。

  

测试系统的整体程序流程图

 

  图4 主程序流程图

  本文所设计的测试系统数字稳压电源能够满足芯片测试所需的电源要求。图5为输出的一路电压。由图可知,所输出的电压稳定。

  

图5 输出电压波形图

 

  图5 输出电压波形图

  4 结 语

  本文设计的稳压电源提供的电压稳定可靠,系统运行也非常稳定。由于可扩展的I/O 非常多,可以同时为多个芯片提供各种所需的稳压电源电压值。

关键字:测试系统  数字稳压电源  S3C2440 引用地址:测试系统数字稳压电源的实现

上一篇:基于ARM9处理器测控终端通信接口设计
下一篇:嵌入式导航系统是在怎样的设计下实现的

推荐阅读最新更新时间:2024-11-12 02:08

ARM历程十——毕业设计(钟表)
#include S3C2440addr.h #include math.h #define pi 3.141593 U16 SEC, MIN, HOUR, TmpSEC_10, TmpMIN_10, TmpHOUR_10,TmpSEC_1,TmpMIN_1,TmpHOUR_1; U16 SEC_x, SEC_y, MIN_x, MIN_y, HOUR_x, HOUR_y, OldMIN=10000; U16 PandColor_big ; U16 PandColor_sml ; extern U16 Flag; extern U16 fz; extern const unsigned char gImage_goback
[单片机]
基于PLC 的万能式断路器二次回路特性测试系统实现
0 引言 本测试系统是万能式断路器生产流水线上对产品进行自动检验测试的试验设备。它以可编程序控制器(PLC) 作为控制核心,触摸屏为操作和显示单元,控制智能交- 直变频电源产生可调的实际电压接入断路器二次接线,对各型号框架断路器的电操机构、闭合电磁铁、分励脱扣器、欠压脱扣器按出厂检验细则进行自动测试,并判别测试结果是否符合产品技术指标要求。采用该测试系统可有效改善框架断路器产品检验工作的规范性,提高特性检测工作效率和测试结果的准确性,加强对产品生产过程和检验过程的管理。 1 系统总体方案 本测试系统适用HSW1 系列HSW1-1000 /2000 /3200 /4000、HSW6 系列HSW6-1600 /2500 /4000 固
[测试测量]
基于PLC 的万能式断路器二次回路特性<font color='red'>测试系统</font>实现
泰克TSP-2000-SOLAR半导体器件的多组太阳能电池I-V测试系统方案
太阳能电池或光伏PV电池是从光源中吸收光子然后释放电子的器件,当太阳能电池与负载相连时,可以引起电流流动。太阳电池研究人员和制造商努力实现尽可能高的效率,同时损失最小。因此,太阳能电池与光伏材料的电气特性成为研究开发和制造过程中的一部分。对太阳能电池进行 I-V 特性分析对推导有关其性能的重要参数至关重要,包括最大电流Imax和电压Vmax、开路电压Voc、短路电流Isc以及效率η。 越来越多的科研工作者投入到太阳能电池的研究中,其中有机薄膜材料电池、砷化镓材料电池、染料敏化材料等太阳能电池已经成为研究热点。太阳能电池光电特性包括伏安I-V特性,光谱响应SR特性、量子效率QE特性,而太阳能电池I-V特性测试是评估太阳能电池参数
[测试测量]
泰克TSP-2000-SOLAR半导体器件的多组太阳能电池I-V<font color='red'>测试系统</font>方案
s3c2440裸机-异常中断4-irq外部中断
我们回顾下中断产生前后的处理流程:详见异常、中断的原理与流程 中断前: 中断产生后: 问题案例: 我们想实现一个按键点灯程序,我们知道有以下两种方案: 1.轮询方案:轮询检测按键的电平状态,当检测到被按下后,对应的gpio会拉低,点亮对应的led;(略) 2.中断方案:将按键配置成外部中断源,当有按键按下,触发中断,在中断服务程序(isr)中去完成点灯。下面开始写代码: 一.中断初始化 1)中断源设置 我们用按键作为外部中断源,我们把按键对应的gpio配置成中断引脚,当按键按下,相应的gpio产生了电平跳变,就会触发外部中断。 我们想达到按下按键灯亮,松开按键灯灭这种效果(配成双边沿触发,按下的时候产生下降沿
[单片机]
基于magnum II测试系统的MRAM VDMR8M32测试技术研究
摘要: VDMR8M32是珠海 欧比特 公司自主研发的一种高速、大容量的TTL同步静态存储器( MRAM ),可利用其对大容量数据进行高速存取。本文首先介绍了该芯片的结构和原理,其次详细阐述了基于 magnum II 测试系统的测试技术研究,提出了采用magnum II测试系统的APG及其他模块实现对MRAM VDMR8M32进行电性测试及功能测试。其中功能测试包括全空间读写数据0测试,全空间读写数据1,以棋盘格方式进行全空间读写测试。另外,针对MRAM的关键时序参数,如TAVQV(地址有效到数据有效的时间)、TELQV(片选使能到数据有效的时间)、TGLQV(输出使能到输出数据有效的时间)等,使用测试系统为器件施加适当的控制激
[嵌入式]
基于magnum II<font color='red'>测试系统</font>的MRAM VDMR8M32测试技术研究
s3c2440之IIS(2)I2S音频总线学习-数字音频技术
IIS音频总线学习(一)数字音频技术 一、声音的基本概念 声音是通过一定介质传播的连续的波。 重要指标: 振幅:音量的大小 周期:重复出现的时间间隔 频率:指信号每秒钟变化的次数 声音按频率分类: 声音的传播携带了信息,它是人类传播信息的一种主要媒体。 声音的三种类型: 波形声音:包含了所有声音形式 语音:不仅是波形声音,而且还有丰富的语言内涵(抽象→提取特征→意义理解) 音乐:与语音相比,形式更规范。音乐是符号化的声音。 二、声音的数字化 1.声音信号的类型 模拟信号(自然界、物理) 数字信号(计算机) 2.声音数字化过程 3.声音数字化过程示意图 4.声音数
[单片机]
s3c2440的IIC控制
在tq2440和mini2440上都连接着EEPROM 它们作用也不过測试I2C总线能否用。 当中在mini2440上EEPROM型号是 AT24C08,在tq2440上这个型号是 AT24C02A。 它们之间容量不同。地址线也不一样。 S3C2440A RISC 微处理器能够支持一个多主控 IIC 总线串行接口。一条串行数据线(SDA)和一条专用时钟线(SCL) 连接到 IIC 总线的总线主控和外设之间。SDA 和 SCL 线都为双向的。都连接到GPE14(SCL) GPE15(SDA)。 为了控制多主控 IIC 总线操作,必须写入值到下面寄存器中: – 多主控 IIC 总线控制寄存器,IICCON – 多主控
[单片机]
<font color='red'>s3c2440</font>的IIC控制
基于LabView的晶体振荡器测试系统
石英晶体振荡器是一种用于稳定频率和选择频率的重要电子元件,也简称为 晶振 。由于石英晶体振荡器具有体积小、重量轻、可靠性高、具有很高的频率稳定性和良好的温度特性,因此被广泛应用于通信、广播、导航、电子对抗及精密测量仪器中。目前,大多数测试人员对晶体振荡器的测量还采用手工测试。无论在初测、老化测试还是终测中,测试人员需要先连接好测试电路,然后将晶体振荡器放入夹具,打开稳压电源并不断地调整示波器显示的波形,在各项指标都满足后开始从频率计中读取数据并手工记录。有时为了得到稳定精确的数据,还要等待一段时间再读数,可见操作步骤十分繁琐,并且容易造成人为误差。为了简化测试工作,提高工作效率及提高测试数据的可靠性,本文介绍的是一种在LabVie
[测试测量]
基于LabView的晶体振荡器<font color='red'>测试系统</font>
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved