LCD实验学习笔记(五):MMU

发布者:科技舞者最新更新时间:2023-06-15 来源: elecfans关键字:LCD  MMU 手机看文章 扫描二维码
随时随地手机看文章

内存管理分别页表机制和内存分配机制两块。

页表机制就是管理设备真实物理地址与虚拟地址的动态或静态的映射,基于cpu内部的mmu(内存管理单元)进行。

CP15(协处理器)的C0(缓存)是一级页表,含4096个索引(每索引4字节,共16K)。

每个索引项代表1MB地址空间,4096*1MB=4GB=32位CPU可寻址4GB空间。

4096个索引欺项,对应虚拟地址[31:20]。

每个索项引占4字节32位,其[1:0]含义为:

00无效,MMU向CPU发出缺页异常;

01粗页表,二级页表是64K或4K页;

10段(section),每段长度1MB;

11细页表,二级页表是1K页。

段模式下,送进MMU的32位虚拟地址被分成两部份,[31:20]为段索引,[19:0]为段内偏移地址。

MMU根据段索引,找到索引项标记的所映射的物理段的首地址(索引项的[31:20]<<20),加上偏移地址,就成为物理寻址地址。

cpu默认不是启用mmu的,使用物理地址直接寻址。

使用mmu,要先在内存中初始化页表TTB,然后将这个页表基地址写到P15的控制寄存器

创建页表和启用mmu代码如下(假设映射0xA0000000开始的1M虚拟地址空间映射到从0x56000000开始的1M物理地址空间):

 


 

void creat_page_table(void)
{
#define MMU_FULL_ACCESS (3 << 10) /* 访问权限 */
#define MMU_DOMAIN (0 << 5) /* 属于哪个域 */
#define MMU_SPECIAL (1 << 4) /* 必须是1 */
#define MMU_CACHEABLE (1 << 3) /* cacheable */
#define MMU_BUFFERABLE (1 << 2) /* bufferable */
#define MMU_SECTION (2) /* 表示这是段描述符 */
#define MMU_SECDESC (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | MMU_SECTION)
#define MMU_SECDESC_WB (MMU_FULL_ACCESS | MMU_DOMAIN | MMU_SPECIAL | MMU_CACHEABLE | MMU_BUFFERABLE | MMU_SECTION)
#define MMU_SECTION_SIZE 0x00100000

  unsigned long virtualaddr, physicaladdr;  
  unsigned long *mmu_tlb_base = (unsigned long *)0x30000000;

  //steppingstone地址为0,将0-1M地址映射到第一个虚拟地址段
  virtualaddr = 0;
  physicaladdr = 0;
  *(mmu_tlb_base + (virtualaddr >> 20)) = (physicaladdr & 0xfff00000) | MMU_SECDESC_WB;

  /*
  * 0x56000000是GPIO寄存器的起始物理地址,
  * GPBCON和GPBDAT这两个寄存器的物理地址0x56000050、0x56000054,
  * 为了在第二部分程序中能以地址0xA0000050、0xA0000054来操作GPFCON、GPFDAT,
  * 把从0xA0000000开始的1M虚拟地址空间映射到从0x56000000开始的1M物理地址空间
  */
  virtualaddr = 0xA0000000;
  physicaladdr = 0x56000000;
  *(mmu_tlb_base + (virtualaddr >> 20)) = (physicaladdr & 0xfff00000) | MMU_SECDESC;

  /*
  * SDRAM的物理地址范围是0x30000000~0x33FFFFFF,
  * 将虚拟地址0xB0000000~0xB3FFFFFF映射到物理地址0x30000000~0x33FFFFFF上,
  * 总共64M,涉及64个段描述符
  */
  virtualaddr = 0xB0000000;
  physicaladdr = 0x30000000;  
  while (virtualaddr < 0xB4000000)
  {
    *(mmu_tlb_base + (virtualaddr >> 20)) = (physicaladdr & 0xfff00000)| MMU_SECDESC_WB;
    virtualaddr += 0x100000;
    physicaladdr += 0x100000;
  }

}

void mmu_init(void)
{
  unsigned long ttb = 0x30000000;
  __asm__(
    "mov r0, #0n"
    "mcr p15, 0, r0, c7, c7, 0n" /* 使无效ICaches和DCaches */

    "mcr p15, 0, r0, c7, c10, 4n" /* drain write buffer on v4 */
    "mcr p15, 0, r0, c8, c7, 0n" /* 使无效指令、数据TLB */

    "mov r4, %0n" /* r4 = 页表基址 */
    "mcr p15, 0, r4, c2, c0, 0n" /* 设置页表基址寄存器 */

    "mvn r0, #0n"
    "mcr p15, 0, r0, c3, c0, 0n" /* 域访问控制寄存器设为0xFFFFFFFF,
    * 不进行权限检查
    */
    /*
    * 对于控制寄存器,先读出其值,在这基础上修改感兴趣的位,
    * 然后再写入
    */
    "mrc p15, 0, r0, c1, c0, 0n" /* 读出控制寄存器的值 */

    /* 控制寄存器的低16位含义为:.RVI ..RS B... .CAM
    * R : 表示换出Cache中的条目时使用的算法,
    * 0 = Random replacement;1 = Round robin replacement
    * V : 表示异常向量表所在的位置,
    * 0 = Low addresses = 0x00000000;1 = High addresses = 0xFFFF0000
    * I : 0 = 关闭ICaches;1 = 开启ICaches
    * R、S : 用来与页表中的描述符一起确定内存的访问权限
    * B : 0 = CPU为小字节序;1 = CPU为大字节序
    * C : 0 = 关闭DCaches;1 = 开启DCaches
    * A : 0 = 数据访问时不进行地址对齐检查;1 = 数据访问时进行地址对齐检查
    * M : 0 = 关闭MMU;1 = 开启MMU
    */

    /*
    * 先清除不需要的位,往下若需要则重新设置它们
    */
    /* .RVI ..RS B... .CAM */
    "bic r0, r0, #0x3000n" /* ..11 .... .... .... 清除V、I位 */
    "bic r0, r0, #0x0300n" /* .... ..11 .... .... 清除R、S位 */
    "bic r0, r0, #0x0087n" /* .... .... 1... .111 清除B/C/A/M */

    /*
    * 设置需要的位
    */
    "orr r0, r0, #0x0002n" /* .... .... .... ..1. 开启对齐检查 */
    "orr r0, r0, #0x0004n" /* .... .... .... .1.. 开启DCaches */
    "orr r0, r0, #0x1000n" /* ...1 .... .... .... 开启ICaches */
    "orr r0, r0, #0x0001n" /* .... .... .... ...1 使能MMU */

    "mcr p15, 0, r0, c1, c0, 0n" /* 将修改的值写入控制寄存器 */
    : /* 无输出 */
    : "r" (ttb));

}


关键字:LCD  MMU 引用地址:LCD实验学习笔记(五):MMU

上一篇:LCD实验学习笔记(六):存储控制器
下一篇:LCD实验学习笔记(四):系统时钟

推荐阅读最新更新时间:2024-10-31 10:17

mini2440裸机程序 统宝3.5 LCD驱动 TopPoly-TD035STED4
关于MDK配置,请看前面的文章 mini2440裸机程序 如何点亮led灯 基于MDK4.11版 http://hi.baidu.com/如来大悲/blog/item/c6150233be4692a45edf0e02.html /************************************************************** The initial and control for 640×480 16Bpp TFT LCD----VGA **************************************************************/ #define rGPCCON (
[单片机]
mini2440裸机程序 统宝3.5 <font color='red'>LCD</font>驱动 TopPoly-TD035STED4
多项指标看液晶电视显示品质之讨论篇
    TFT LCD产业从最小的便携电视、手持式摄像机、数码相机等小英寸开始,之后进展到笔记本电脑、台式机显示器等中型尺寸,如今则是往大尺寸的客厅级、家庭影院级的液晶电视市场迈进。     关于此,TFTLCD所要面临与挑战的,不单单是已发展数十年的CRT显像管(也称为‘阴极射线管’)电视,也包括等离子电视,甚至是内外投影型显示设备。虽然TFTLCD有着轻薄省电的优势,但是单纯就显示品质的特性表现而言,TFTLCD反而是最居劣势的,不仅不如以往的CRT,同样的也不如PDP,并且PDP与LCD一样都诉求轻薄、平面等特性。     正因为如此,力主液晶电视的业者正积极采用各种技术来强化其表现,而到底有哪些画质与显示特性必须要
[嵌入式]
TPS65165 –具备高速放大器的小型LCD偏置IC适用于电视与监控器TFT-LCD面板
TPS65165 是一种具备 3 个高速运算放大器的小型 LCD 偏置IC,可用于伽玛纠正 (gamma correction)和/或 VCOM 电源。该器件可针对 TFT-LCD 显示屏(VS、VGL 与 VGH)生成全部 3 个电压轨。其集成了一个由时序控制器 (TCON) 的逻辑信号控制的高电压开关,能够为 VGH 提供栅极电压调制功能。如果不需要该功能,可以将 CTRL 引脚固定于高侧。 该器件还具备高压应力测试特性。其中 VGH 的输出电压通常设置为 30V,而 Vs 的输出电压可编程为任何较高的电压。通过将 HVS 引脚拉至高侧,可以启用高压应力测试。实施可调排序功能后,可通过选择连接至 ADLY 与 GDLY 的电
[新品]
陶瓷驱动器电压实时监测系统设计
在自适应光学系统设计中,波前校正器作为光学系统的一个重要组成部分发展起来,它与波前传感器和波前控制部分相结合,使光学系统具有克服外界动态干扰的能力,这是传统光学技术难以做到的。在众多类型的波前校正器中,分立压电式连续镜面变形镜以其变形量大、表面变形没有间断点等优点而被广泛的采用。变形镜的结构有基板、驱动器和薄镜面组成,在基板上固定若干个压电驱动器,驱动器前在固定一个薄的光学镜面,施加电压给驱动器,压电陶瓷即可产生正的或负的变形,从而推动薄反射镜表面产生变形,起到改变光学波前并校正波前误差的作用。为了防止压电驱动器输出电压出现异常,导致系统出现故障,需要及时了解各路压电驱动器输出电压情况,并且工程中要求监测上千路压电驱动器的输出
[电源管理]
陶瓷驱动器电压实时监测系统设计
09年TFT LCD零组件产值首次下滑
据DisplaySearch近期发布的2009年上半年TFT LCD材料与关键零组件报告显示,2009年TFT LCD材料与零组件产值将首次出现下滑,年产值仅达490亿美元,较2008年下滑8%。 DisplaySearch指出,自2008下半年TFT LCD面板厂调降产能利用率开始,出货量也相应减少,直接对上游材料与零组件的供应产生一定冲击。 另一方面,为保有一定现金部位以因应不景气的影响,面板厂除降低产能利用率外,也同时调低库存水准,这将使材料与零组件厂商甚至较面板厂的产能利用率更低,并拉低售价,因此,DisplaySearch估计2009年材料与零组件产值将有一定程度下滑。 2008到2009年
[半导体设计/制造]
全球大型 TFT-LCD 面板出货量再创新低
全世界大型TFT-LCD面板出货量,与前月相比下跌20.5%,与去年同月相比下跌21.7%。韩国厂商销售额占有率急速增加到58%,预计此占有率将维持一段期间,以销售额为准三星电子占第1位,以出货量为准LG电子占第1位。 Displaybank的最新研究表明大型TFT-LCD面板出货业绩创2007年4月份以来的最低水平。11月份全球大型TFT-LCD面板出货量为2,940万台,与上个月10月份的3,700万台相比下跌了20.5%。这是从去年4月份以来最低的出货量,与去年同期相比下降了21.7%。 Displaybank的数据显示,面板制造企业的总销售额是38亿美元,从2005年7月份以后达到了最低值。这与前
[焦点新闻]
LCD液晶背光用白光LED驱动解决方案
LCD目前较常采用CCFL作为背光光源,但因CCFL背光驱动线路复杂,要求驱动电压高及演色性能力等因素,再加上背光的光源是系统中耗电量最大的部分,所以在功率限制日趋严苛的情况下,目前已逐渐被产业讨论将使用LED作为代替。 为满足节能及环保的需求,针对不同应用与不同的功耗范围,全球许多政府及能源机构的各种新的能耗标准也纷纷出炉。同时,更加严格的规范也在制定中。降低能耗成为一项无法回避的重要议题,所以对电源管理也提出了更高的要求。 LED控制正向电流方案 LED是由电流驱动的器件,其亮度与正向电流呈比例关系。有两种方法可以控制正向电流。第一种方法是采用LEDV-I曲线,一般利用一个电压电源和一个整流电阻器,来确定产生预期正向电流
[电源管理]
利用单片机I/O口直接驱动LCD
  如何将小家电成本降低的同时,又保证其性能,是对应用工程师提出的更高要求。本控制板需要进行温度控制,显示界面要求LCD显示。带专用LCD驱动器,又带A/D转换器的单片机成本太高,因此选用台湾义隆公司带A/D的单片机EM78P259N直接驱动LCD。该款单片机性价比高,性能可靠,很适合在家电控制中应用。 1 LCD简介   目前,市面主流LCD(液晶显示器)分成以下几大类:TN(扭曲阵列型)、STN(超扭曲阵列型)、DSTN(双层超扭曲阵列)、HPA(高性能定址或快速DSTN)、TFT(薄膜场效应晶体管)等。由于成本因素,目前小家电大多数采用的是TN型单色液晶显示器,它的原理是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽
[应用]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved