STM32开发板之ADC功能框图讲解

发布者:平和的心情最新更新时间:2023-09-26 来源: elecfans关键字:STM32  ADC  功能框图 手机看文章 扫描二维码
随时随地手机看文章

一.ADC简介

STM32f103系列有3个ADC,精度为12位,每个ADC最多有16个外部通道。其中ADC1和ADC2都有16个外部通道,ADC3一般有8个外部通道,各通道的A/D转换可以单次、连续、扫描或间断执行,ADC转换的结果可以左对齐或右对齐储存在16位数据寄存器中。ADC的输入时钟不得超过14MHz,其时钟频率由PCLK2分频产生。


二.ADC功能框图讲解

学习STM32开发板上的外设时首先要了解其外设的功能框图,如下:

23548d7e-3a57-11ee-9e74-dac502259ad0.png

功能框图可以大体分为7部分,下面一一讲解:

1.电压输入范围

ADC所能测量的电压范围就是VREF- ≤ VIN ≤ VREF+,把 VSSA 和 VREF-接地,把 VREF+和 VDDA 接 3V3,得到ADC 的输入电压范围为:0~3.3V。

2.输入通道

ADC的信号输入就是通过通道来实现的,信号通过通道输入到单片机中,单片机经过转换后,将模拟信号输出为数字信号。STM32中的ADC有着18个通道,其中外部的16个通道已经在框图中标出,如下:

2383d264-3a57-11ee-9e74-dac502259ad0.png

这16个通道对应着不同的IO口,此外ADC1/2/3 还有内部通道:ADC1 的通道 16 连接到了芯片内部的温度传感器, Vrefint 连接到了通道 17。ADC2 的模拟通道 16 和 17 连接到了内部的 VSS。

ADC的全部通道如示:

239a2212-3a57-11ee-9e74-dac502259ad0.png

外部的16个通道在转换时又分为规则通道和注入通道,其中规则通道最多有16路,注入通道最多有4路(注入通道貌似使用不多),下面简单介绍一下俩种通道:

规则通道

规则通道顾名思义就是,最平常的通道、也是最常用的通道,平时的ADC转换都是用规则通道实现的。

注入通道

注入通道是相对于规则通道的,注入通道可以在规则通道转换时,强行插入转换,相当于一个“中断通道”吧。当有注入通道需要转换时,规则通道的转换会停止,优先执行注入通道的转换,当注入通道的转换执行完毕后,再回到之前规则通道进行转换。

3.转换顺序

知道了ADC的转换通道后,如果ADC只使用一个通道来转换,那就很简单,但如果是使用多个通道进行转换就涉及到一个先后顺序了,毕竟规则转换通道只有一个数据寄存器。多个通道的使用顺序分为俩种情况:规则通道的转换顺序和注入通道的转换顺序。

规则通道转换顺序

规则通道中的转换顺序由三个寄存器控制:SQR1、SQR2、SQR3,它们都是32位寄存器。SQR寄存器控制着转换通道的数目和转换顺序,只要在对应的寄存器位SQx中写入相应的通道,这个通道就是第x个转换。具体的对应关系如下:

23b4d1de-3a57-11ee-9e74-dac502259ad0.png

通过SQR1寄存器就能了解其转换顺序在寄存器上的实现了:

23d4bc60-3a57-11ee-9e74-dac502259ad0.png

注入通道转换顺序

和规则通道转换顺序的控制一样,注入通道的转换也是通过注入寄存器来控制,只不过只有一个JSQR寄存器来控制,控制关系如下:

240f4b00-3a57-11ee-9e74-dac502259ad0.png

需要注意的是,只有当JL=4的时候,注入通道的转换顺序才会按照JSQ1、JSQ2、JSQ3、JSQ4的顺序执行。当JL<4时,注入通道的转换顺序恰恰相反,也就是执行顺序为:JSQ4、JSQ3、JSQ2、JSQ1。

配置转换顺序的函数如示:

/**

  * @brief  Configures for the selected ADC regular channel its corresponding

  *         rank in the sequencer and its sample time.

  * @param  ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.

  * @param  ADC_Channel: the ADC channel to configure. 

  *   This parameter can be one of the following values:

  *     @arg ADC_Channel_0: ADC Channel0 selected

  *     @arg ADC_Channel_1: ADC Channel1 selected

  *     @arg ADC_Channel_2: ADC Channel2 selected

  *     @arg ADC_Channel_3: ADC Channel3 selected

  *     @arg ADC_Channel_4: ADC Channel4 selected

  *     @arg ADC_Channel_5: ADC Channel5 selected

  *     @arg ADC_Channel_6: ADC Channel6 selected

  *     @arg ADC_Channel_7: ADC Channel7 selected

  *     @arg ADC_Channel_8: ADC Channel8 selected

  *     @arg ADC_Channel_9: ADC Channel9 selected

  *     @arg ADC_Channel_10: ADC Channel10 selected

  *     @arg ADC_Channel_11: ADC Channel11 selected

  *     @arg ADC_Channel_12: ADC Channel12 selected

  *     @arg ADC_Channel_13: ADC Channel13 selected

  *     @arg ADC_Channel_14: ADC Channel14 selected

  *     @arg ADC_Channel_15: ADC Channel15 selected

  *     @arg ADC_Channel_16: ADC Channel16 selected

  *     @arg ADC_Channel_17: ADC Channel17 selected

  * @param  Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16.

  * @param  ADC_SampleTime: The sample time value to be set for the selected channel. 

  *   This parameter can be one of the following values:

  *     @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles

  *     @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles

  *     @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles

  *     @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles

  *     @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles

  *     @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles

  *     @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles

  *     @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles

  * @retval None

  */

void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)

{

  函数内容略;

}

4.触发源

ADC转换的输入、通道、转换顺序都已经说明了,但ADC转换是怎么触发的呢?就像通信协议一样,都要规定一个起始信号才能传输信息,ADC也需要一个触发信号来实行模/数转换。

其一就是通过直接配置寄存器触发,通过配置控制寄存器CR2的ADON位,写1时开始转换,写0时停止转换。在程序运行过程中只要调用库函数,将CR2寄存器的ADON位置1就可以进行转换,比较好理解。

另外,还可以通过内部定时器或者外部IO触发转换,也就是说可以利用内部时钟让ADC进行周期性的转换,也可以利用外部IO使ADC在需要时转换,具体的触发由控制寄存器CR2决定。

ADC_CR2寄存器的详情如下:

242e2d18-3a57-11ee-9e74-dac502259ad0.png

 

247e0964-3a57-11ee-9e74-dac502259ad0.png

 

249ed964-3a57-11ee-9e74-dac502259ad0.png

5.转换时间

还有一点,就是转换时间的问题,ADC的每一次信号转换都要时间,这个时间就是转换时间,转换时间由输入时钟和采样周期来决定。

输入时钟

由于ADC在STM32中是挂载在APB2总线上的,所以ADC得时钟是由PCLK2(72MHz)经过分频得到的,分频因子由 RCC 时钟配置寄存器RCC_CFGR 的位 15:14 ADCPRE[1:0]设置,可以是 2/4/6/8 分频,一般配置分频因子为8,即8分频得到ADC的输入时钟频率为9MHz。

采样周期

采样周期是确立在输入时钟上的,配置采样周期可以确定使用多少个ADC时钟周期来对电压进行采样,采样的周期数可通过 ADC采样时间寄存器 ADC_SMPR1 和 ADC_SMPR2 中的 SMP[2:0]位设置,ADC_SMPR2 控制的是通道 0~9, ADC_SMPR1 控制的是通道 10~17。每个通道可以配置不同的采样周期,但最小的采样周期是1.5个周期,也就是说如果想最快时间采样就设置采样周期为1.5.

转换时间

转换时间=采样时间+12.5个周期

12.5个周期是固定的,一般我们设置 PCLK2=72M,经过 ADC 预分频器能分频到最大的时钟只能是 12M,采样周期设置为 1.5 个周期,算出最短的转换时间为 1.17us。

6.数据寄存器

转换完成后的数据就存放在数据寄存器中,但数据的存放也分为规则通道转换数据和注入通道转换数据的。

规则数据寄存器

规则数据寄存器负责存放规则通道转换的数据,通过32位寄存器ADC_DR来存放。

24ba9f6e-3a57-11ee-9e74-dac502259ad0.png

当使用ADC独立模式(也就是只使用一个ADC,可以使用多个通道)时,数据存放在低16位中,当使用ADC多模式时高16位存放ADC2的数据。需要注意的是ADC转换的精度是12位,而寄存器中有16个位来存放数据,所以要规定数据存放是左对齐还是右对齐。

当使用多个通道转换数据时,会产生多个转换数据,然鹅数据寄存器只有一个,多个数据存放在一个寄存器中会覆盖数据导致ADC转换错误,所以我们经常在一个通道转换完成之后就立刻将数据取出来,方便下一个数据存放。一般开启DMA模式将转换的数据,传输在一个数组中,程序对数组读操作就可以得到转换的结果。

注入数据寄存器

注入通道转换的数据寄存器有4个,由于注入通道最多有4个,所以注入通道转换的数据都有固定的存放位置,不会跟规则寄存器那样产生数据覆盖的问题。ADC_JDRx 是 32 位的,低 16 位有效,高 16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由ADC_CR2 的 11 位 ALIGN 设置。

24ec421c-3a57-11ee-9e74-dac502259ad0.png

7.中断

25290e0e-3a57-11ee-9e74-dac502259ad0.png

从框图中可以知道数据转换完成之后可以产生中断,有三种情况:

规则通道转换完成中断

规则通道数据转换完成之后,可以产生一个中断,可以在中断函数中读取规则数据寄存器的值。这也是单通道时读取数据的一种方法。

注入通道转换完成中断

注入通道数据转换完成之后,可以产生一个中断,并且也可以在中断中读取注入数据寄存器的值,达到读取数据的作用。

模拟看门狗事件

当输入的模拟量(电压)不再阈值范围内就会产生看门狗事件,就是用来监视输入的模拟量是否正常。

以上中断的配置都由ADC_SR寄存器决定:

254101ee-3a57-11ee-9e74-dac502259ad0.png

 

当然,在转换完成之后也可以产生DMA请求,从而将转换好的数据从数据寄存器中读取到内存中。

8.电压转换

要知道,转换后的数据是一个12位的二进制数,我们需要把这个二进制数代表的模拟量(电压)用数字表示出来。比如测量的电压范围是0~3.3V,转换后的二进制数是x,因为12位ADC在转换时将电压的范围大小(也就是3.3)分为4096(2^12)份,所以转换后的二进制数x代表的真实电压的计算方法就是:y=3.3* x / 4096

三、初始化结构体

每个外设的核心就是其对应的初始化结构体了,ADC的初始化结构体如下:

typedef struct

 {

 uint32_t ADC_Mode; // ADC 工作模式选择

 FunctionalState ADC_ScanConvMode; // ADC 扫描(多通道)或者单次(单通道)模式选择 

 FunctionalState ADC_ContinuousConvMode; // ADC 单次转换或者连续转换选择

 uint32_t ADC_ExternalTrigConv; // ADC 转换触发信号选择

 uint32_t ADC_DataAlign; // ADC 数据寄存器对齐格式

 uint8_t ADC_NbrOfChannel; // ADC 采集通道数

 } ADC_InitTypeDef;

通过配置初始化结构体来设置ADC的相关信息。

四、单通道电压采集

用这个程序来简单熟练一下ADC的单通道电压采集吧,程序使用了ADC1的通道11,对应的IO口是PC^1,因为博主的开发板上PC ^1引脚没有任何复用,使用中断,在中断中读取转换的电压。

1.头文件

为了提高文件的可移植性,头文件中定义了一些与ADC和中断相关的量,在移植程序的时候只需要修改头文件中的定义即可。

#ifndef __ADC_H

#define __ADC_H

 

#include "stm32f10x.h"

 

/* 采用ADC1的通道11  引脚为PC^1 模式必须是模拟输入*/

#define ADC_GPIO_RCC     RCC_APB2Periph_GPIOC

#define ADC_GPIO_PORT    GPIOC

#define ADC_GPIO_PIN     GPIO_Pin_1

#define ADC_GPIO_MODE    GPIO_Mode_AIN  

 

/* 配置与中断有关的信息 */

#define ADC_IRQn         ADC1_2_IRQn

#define ADC_RCC          RCC_APB2Periph_ADC1

 

 

/* 配置ADC初始化结构体的宏定义 */

#define ADCx                          ADC1

#define ADCx_ContinuousConvMode       ENABLE                  //连续转换模式

#define ADCx_DataAlign                ADC_DataAlign_Right    //转换结果右对齐

#define ADCx_ExternalTrigConv         ADC_ExternalTrigConv_None      //不使用外部触发转换,采用软件触发

#define ADCx_Mode                     ADC_Mode_Independent    //只使用一个ADC,独立模式

#define ADCx_NbrOfChannel             1                      //一个转换通道

#define ADCx_ScanConvMode             DISABLE                //禁止扫描模式,多通道时使用

 

/* 通道信息和采样周期 */

#define ADC_Channel                   ADC_Channel_11

#define ADC_SampleTime                ADC_SampleTime_55Cycles5

 

 

/* 函数声明 */

void ADC_COnfig(void);

void ADC_NVIC_Config(void);

void ADC_GPIO_Config(void);

void ADCx_Init(void);

#endif  /* __ADC_H */

 

2.引脚配置函数

首先配置相应的GPIO引脚,毕竟模拟信号是通过GPIO引脚传输到开发板的,注意的是,引脚的模式一定要是模拟输入!

void ADC_GPIO_Config(void)

{

GPIO_InitTypeDef   GPIO_InitStruct;

RCC_APB2PeriphClockCmd(ADC_GPIO_RCC,  ENABLE);

 

GPIO_InitStruct.GPIO_Pin = ADC_GPIO_PIN ;

GPIO_InitStruct.GPIO_Mode = ADC_GPIO_MODE ;

 

GPIO_Init(ADC_GPIO_PORT , &GPIO_InitStruct);

}

配置引脚就是老套路:声明结构体变量、开启时钟、写入结构体、初始化GPIO

3.NVIC配置函数

因为我们是在转换完成后利用中断,在中断函数中读取数据,所以要首先配置中断函数的优先级,因为程序中只有这一个中断,所以优先级的配置就比较随意。

void ADC_NVIC_Config(void)

{

 

NVIC_InitTypeDef NVIC_InitStruct ;

 

/* 配置中断优先级分组(设置抢占优先级和子优先级的分配),在函数在misc.c */

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1) ;

 

/* 配置初始化结构体 在misc.h中 */

/* 配置中断源 在stm32f10x.h中 */

NVIC_InitStruct.NVIC_IRQChannel = ADC_IRQn ;

/* 配置抢占优先级 */

NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 1 ;

/* 配置子优先级 */

NVIC_InitStruct.NVIC_IRQChannelSubPriority = 1 ;

/* 使能中断通道 */

NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE ;

/* 调用初始化函数 */

NVIC_Init(&NVIC_InitStruct) ;

}

4.ADC配置函数

ADC的配置函数是ADC的精髓,在这个函数中包含的内容有:ADC的初始化结构体配置、配置了时钟分频、配置了通道转换顺序、打开转换中断、进行校准、软件触发ADC采集等。
函数中都有详细的注释:

void ADC_COnfig(void)

{

ADC_InitTypeDef  ADC_InitStruct;

RCC_APB2PeriphClockCmd(ADC_RCC,  ENABLE);

 

/* 配置初始化结构体,详情见头文件 */

ADC_InitStruct.ADC_ContinuousConvMode = ADCx_ContinuousConvMode  ;

ADC_InitStruct.ADC_DataAlign = ADCx_DataAlign ;

ADC_InitStruct.ADC_ExternalTrigConv = ADCx_ExternalTrigConv ;

ADC_InitStruct.ADC_Mode = ADCx_Mode ;

ADC_InitStruct.ADC_NbrOfChannel = ADCx_NbrOfChannel ;

ADC_InitStruct.ADC_ScanConvMode = ADCx_ScanConvMode ;

 

ADC_Init(ADCx, &ADC_InitStruct);

 

/* 配置ADC时钟为8分频,即9M */

RCC_ADCCLKConfig(RCC_PCLK2_Div8);

/* 配置ADC通道转换顺序和时间 */

ADC_RegularChannelConfig(ADCx, ADC_Channel, 1, ADC_SampleTime );

[1] [2]
关键字:STM32  ADC  功能框图 引用地址:STM32开发板之ADC功能框图讲解

上一篇:以STM32F407ZGT6单片机来讲解一下扩展外部SRAM
下一篇:基于STM32+华为云IOT设计的智能温室大棚监控系统

推荐阅读最新更新时间:2024-11-10 16:56

51单片机学习:ADC模数转换实验--热敏电阻AD采集
实验名称:ADC模数转换实验--热敏电阻AD采集 接线说明: 实验现象:下载程序后,数码管上显示AD模块采集热敏电阻的AD值 注意事项: ***************************************************************************************/ #include public.h #include smg.h #include xpt2046.h /******************************************************************************* * 函 数 名 : main * 函数功能 : 主
[单片机]
ST推出新款超低功耗STM32微控制器
同级最高的闪存容量,最大容量高达512KB。 中国,2014年3月26日 ——意法半导体STM32 L1系列超低功耗ARM® Cortex®-M3 32位微控制器新增一款512KB闪存产品。目前L1系列共有三个产品线合70余款产品,其超低功耗和存储容量的组合在市场上堪称独一无二,闪存和RAM最大容量分别高达512KB和80KB。 新产品采用意法半导体独有的超低泄漏电流的110纳米CMOS制造工艺和优化的系统架构,工作能耗极低,目标应用瞄准高成本效益的嵌入式设计,适用于健身、医疗、穿戴式设备和工业/电表等电池供电的联网产品。 L1系列的主要特性: · 高性能ARM Cortex-M3 32位内核:在32
[单片机]
ST推出新款超低功耗<font color='red'>STM32</font>微控制器
STM32之模拟I2C读取加速度传感器
前言:由于之前学会了SPI,软硬件SPI都会了,发现只要读懂时序图,其他都是小菜一碟,I2C也是如此,不过本少爷还是花了1天时间去理解了I2C的一些知识,发现模拟比硬件更能理解其中的工作原理,虽然速度慢点。 废话:时间有限,暂时写一点核心内容,该内容本人从MMA8451Q加速度传感器的手册上读的。坑爹的新浪居然不支持我上传图片,很无奈 正文: ------------------------------------------------模拟I2C---------------------------------------------------- 1.start 2.写入7位device地址+1位写W 3.等待从设备握
[单片机]
STM32】HAL库-基本定时器
简介 基本定时器TIM6和TIM7各包含一个16位自动装载计数器,由各自的可编程预分频器驱动。它们可以作为通用定时器提供时间基准,特别地可以为数模转换器(DAC)提供时钟。实际上,它们在芯片内部直接连接到DAC并通过触发输出直接驱动DAC。这2个定时器是互相独立的,不共享任何资源。 寄存器 软件可以读写计数器CNT、自动重装载寄存器ARR和预分频寄存器PSC,即使计数器运行时也可以操作。 当前计数值寄存器CNT 向上计数,可随时修改 自动重装载寄存器ARR 可随时修改,具有影子寄存器,根据TIMx_CR1寄存器中的自动重装载预加载使能位(ARPE),写入ARR寄存器的内容能够立即或在每次更新事件(UEV)时,传送到它
[单片机]
【<font color='red'>STM32</font>】HAL库-基本定时器
STM32自学之串口中断模式
今天是自学STM32的第7天了,之前的流水灯,按键,查询方式串口,PWM,计数器和红外有时间再补上来吧,先从今天调试的中断式串口写起吧。 事先说明,写此博客只是为了记录自己的自学历程,由于水平极其有限,所以很多理解可能是错的,欢迎大家积极指出,让我们一起在嵌入式的开发上向前进。 我所使用的是神舟三号学习开发板,芯片型号是STM32F103ZE。功能很齐全了,作为初期自学用绰绰有余。 串口的printf在STM32程序调试过程中,确实可以起到实时跟踪程序进程的作用,但是经过昨天的红外和今天的中断式串口程序的坑爹BUG之后,深深感觉,没事还是不要加printf了,特别是在待处理事件的时间频率很高时,如昨天的红外调试时,
[单片机]
STM32中断优先级彻底讲解
看了一早上资料终于把STM32中断优先级搞懂了, 现在与大家分享: 一:综述 STM32 目前支持的中断共为 84 个(16 个内核+68 个外部), 16 级可编程中断优先级 的设置(仅使用中断优先级设置 8bit 中的高 4 位)和16个抢占优先级(因为抢占优先级最多可以有四位数)。 二:优先级判断 STM32(Cortex-M3)中有两个优先级的概念 抢占式优先级和响应优先级,有人把响应优先级称作'亚优先级'或'副优先级',每个中断源都需要被指定这两种优先级。 具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套,或者说高抢占式优先级的中断可以嵌套低抢占式
[单片机]
STM32中sysTick的设置
SysTick_Config(SystemFrequency / 10) 函数的形参就是systick重装定时器的值。 systck计数频率为每秒72000000次,所以7200000次就是1/10秒,也就是100ms。 SysTick是1个24bit递减计数器,通过对SysTick控制与状态寄存器的设置,可选择HCLK时钟(72M)或HCLK的8分频(9M,缺省是这个)作为SysTick的时钟源。 SysTick的重装寄存器决定了定时器频率。 若SysTick的时钟源是72M, SystemFrequency = 72000000Hz 所以 SysTick_Config(SystemFrequency / 1
[单片机]
011_STM32程序移植之_内部flash开机次数管理
1. 测试环境:STM32C8T6 2. 测试接口: 3. 串口使用串口一,波特率9600 单片机引脚------------CH340引脚 VCC--------------------VCC GND-------------------GND PA9--------------------RXD PA10-------------------TXD 1. 功能: 1. 使用STM32内部falsh进行开机次数记录 2. 通过串口输入密码进行权限的设置 3. 设置唯一硬件标识 2. 移植基础 1. 008_STM32之_keil编译内存大小解析 2. 009_STM32程序移植之_内部fa
[单片机]
011_STM32程序移植之_内部flash开机次数管理
热门资源推荐
热门放大器推荐
  •  zip文件usb_host_device_code
  •  zip文件ESP32-S3源代码
  •  none文件【Follow me第二季第2期】Arduion UR4 作业提交代码
  •  pdf文件单片机C语言编程与Proteus仿真技术 (徐爱钧)
  • 系统发生错误

    系统发生错误

    您可以选择 [ 重试 ] [ 返回 ] 或者 [ 回到首页 ]

    [ 错误信息 ]

    页面错误!请稍后再试~

小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved