通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

发布者:真诚友爱最新更新时间:2024-02-28 来源: elecfans关键字:C8051F020  单片机  立体声信号 手机看文章 扫描二维码
随时随地手机看文章

将LR立体声信号经频谱分析、整形及占空比检测电路进行处理,采用过零鉴相法,通过测矩形波占空比,实现相位差的测试。将LR信号用AD736专用芯片实现AC/DC转换,通过单片机编程,得到LR电平差。


在立体声播音或放音时,如果左右声道信号存在相位差和电平差,对播音或放音质量将会产生一定影响,出现声像漂移、音量减小、噪音增大和失真等故障现象。左右声道相位差电平差越大,音质也越差,严重时还会造成无音故障。


为此文中设计了立体声信号相位差电平差测试仪,只有准确测出相位差电平差,再用补偿电路进行修正,才能保证播音或放音质量,更好地满足人们欣赏到音质优美的广播或音乐的需要。

1 设计方案

如图1所示,是立体声信号相位差电平差测试仪原理方框图。提出了一种立体声信号相位差电平差测试仪的设计方法。用C8051F020单片机为控制核心,主要由相位差检测模块、电平差检测模块、频谱分析及处理模块、电源模块、键盘和显示模块组成。将LR立体声信号经频谱分析、整形及占空比检测电路进行处理,采用过零鉴相法,通过测矩形波占空比,实现相位差的测试。将LR信号分别用AD736专用芯片实现AC/DC转换,通过单片机编程,得到LR电平差。整个系统用单片机控制,键盘操作,用LCD显示相位差电平差及相关信息。

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

2 系统硬件设计

2.1 相位差检测模块

2.1.1 方框图和电路原理图

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

如图2所示,是相位差检测模块原理方框图。如图3所示,是相位差检测模块电路原理。

相位差检测模块由电压比较器、与门、放大器、占空比检测电路和仪器放大器组成。如图3所示,IC2 LM311和IC21LM311及其周围器件,构成2个电压比较器,L(A点信号)R(B点信号)左右声道信号分别经IC2、IC21电压比较器整形变为方波信号(C点信号和D点信号),然后再相与,得到矩形波(E点信号),74LS08是与门。IC4 AD827及其周围器件构成同相放大器,对与门输出的信号进行放大。IC5 CD4069及其周围器件构成占空比检测电路,用过零鉴相法,测量两个矩形波信号的占空比。输入端加入一个占空比为D的矩形波,输出端F点输出一个直流信号,数值在0~100 mV之间变化,这个直流信号既代表占空比D,是反映相位差的一个量。IC6 OPA2111及其周围器件组成仪器放大器,用于放大F点输出信号,因这个信号数值在0~100 mV,是小信号,所以采用自动较零型仪器放大器,以保证测试仪有很高的精度。当开关S1、S2同时打在“1”时,完成自动较零功能;当开关S1、S2同时打在“3”时,是正常的放大功能。放大后的信号,再加到单片机的A/D端,C8051F 020的内部设有12位A/D转换器。

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

2.1.2 理论分析及实现

立体声信号是20Hz~20 kHz的音频信号,用uSL、uSR分别表示由音响设备输出的左右声道信号,其数学表达式为:

uSL(t)=USLsin(ωSLt+ψIL) (1)

uSR(t)=USRsin(ωSRt+ψIR) (2)

在式(1)和式(2)中,ψ是初相,ωt+ψ是相位。相位的表达式为:

φ(t)=ωt+ψ (3)

由式(3)可知,相位是时间t的线性函数。左右声道的φSL(t)和φSR(t)是2个简谐振荡的相位,则其相位差为:

φS(t)=φSL(t)-φSR(t)=(ωSL-ωSR)t+(ψSL-ψSR)=ψSt+(ψSL-ψSR) (4)

由式(4)可知,相位差也是时间t的线性函数。φ对ω偏导数是群延时,群延时tp为

由音响设备输出的左右声道信号“uSL、uSR,经过频谱分析及处理电路后,得到uL、uR信号,uL、uR是同频率的正弦信号,即ωL=ωR,则有:

φ(t)=φL(t)-φR(t)=(ωL-ωR)t+(ψL-ψR)=ψL-ψR (6)

由式(6)可知,uL、uR信号的相位差是一个常数,并由初相之差决定。如将L信号作为基准信号,L、R信号即uL、uR信号的表达式为:

uL(t)=ULsinωt (7)

uR(t)=URsin(ωt+ψ) (8)

这时,L、R信号相位差为:

φ=0-ψ=-ψ (9)

式(9)中的负号表示L滞后R一个ψ角度。所以只需要测量计算出相位差φ即可,或用△ψ表示LR信号的相位差。

如图4所示,是图4中A点、B点、C点、D点、E点的波形图。

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

图4中,uA、uB是L信号和R信号,是正弦波;uC、uD是L、R信号经电压比较器整形后的方波,uE是2个方波相与后得到的矩形波,D是占空比。用过零鉴相法,测量两个矩形波信号的占空比。过零鉴相法是:两个正弦波,频率相同,让其经过鉴相网络后,变为方波。其前沿对应于正弦波的正向过零点,后沿对应于正弦波的负向过零点。再将两个方波送入到触发器的复位端和置位端,被测量方波的前沿将其复位,基准方波的前沿将触发器复位。触发器输出的脉冲宽度即是两个信号过零点的时间差,即图4中的占空比D.

再将uE放大后,送入占空比检测电路,在输出端F得到一个直流电压,数值是0~100 mV,这个直流信号即代表占空比D,是反映相位差的一个量,D从[(0~100%)×T]变化,其中T为A点(或B点)信号的周期。如F点输出信号为10 mV时,D=10%×T,则L(A点信号)和R(B点信号)的相位差△φ=180°-10%x360°。当D=0时,R、L信号的相位差为180°,即反相,这时立体声信号严重失真。

2.2 电平差检测模块

图5所示为电平差检测电路原理图。因左右声道电平差检测电路图完全一样,所以图5是左声道电平差检测电路原理图。电平差检测电路由衰减器、交流直流变换电路和放大器三级组成,其中IC7 NE5532及其周围器件组成衰减器,将输入L信号电压的有效值衰减到200 mV.IC 8AD736及其周围器件组成交流变直流电路。IC9 NE5532及其周围器件组成放大器,将信号放大后送入单片机的A/D端。为了提高精度和减小误差,前级衰减器和后级放大器设计成自动校零型电路。

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

AD736是专用的单片精密真有效值A/D转换器,内部经过激光修正,具有频率特性好、速度快、灵敏度高、输入阻抗高、输出阻抗低、电源范围宽、功耗小等特点,其测量误差小于±0.3%.C3是输入耦合电容,一般取5~25μF.C4是输出滤波电容,一般取5~15μF,其数值会影响到输出电压有效值的精度,在低频端更为重要。C5一般取30~40μF,其数值大小会影响到被测电压的波峰因数Kp,Kp是被测电压的峰值与真有效值之比。

3 系统软件设计

用C8051F020单片机,采用C语言编程,由主程序和子程序两部分组成。主程序完成系统初始化、参数设置和各子程序的调用。子程序主要包括:工作模式选择模块、参数设置及计算模块、相位差计算模块、电平差计算模块、A/D模块、键盘扫描模块和显示模块等。如图6所示,是主程序流程图。

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

4 试验数据及分析

如表1所示,是相位差电平差测试数据。

通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

由表1的测试数据可知,相位差的绝对误差小于0.7°,电平差的绝对误差小于3 mV(当△Ui=10 mV),测试精度较高。


5 结论

随着电子技术的迅速发展,人们的生活质量不断提高,同时对广播和音乐放音也提出了更高的要求。只有准确地测量出左右声道的相位差电平差,再用补偿电路进行修正,才能保证播音和放音质量,满足人们欣赏到音质优美的广播和音乐的需求。

试验数据表明该仪器实现了LR信号相位差电平差的测试,且具有较高的测试精度,并能存储和显示相关信息。本设计具有创新性和实用性,为高质量立体声广播和研发制造高质量音响设备奠定了基础。


关键字:C8051F020  单片机  立体声信号 引用地址:通过利用C8051F020单片机实现立体声信号相位差电平差测试仪的设计

上一篇:基于C8051F系列单片机和CAN总线技术实现电动汽车数字控制系统的设计
下一篇:以C8051F020单片机为系统控制器件的实时检测和记录车辆散热系统动态参数电路设计

推荐阅读最新更新时间:2024-11-18 08:34

单片机系统制作微型打印机的源程序及方案
//单片机系统打印机程序思路如下: // 打印规格(16 16点阵),打印机执行单片机n点行走纸指令:0x1B-0x4A-n。向前走n点行,n的值是1-255范围内。 //设置 n点行间距:0x1B-0x31-n。n的值是0-255之间, //在使用ESC/K命令打印点阵图形时,通常设置n=0。文本打印时通常设置n=3。 //-----------------------函数声明-------------------------------------------------------- #include stdio.h #include absacc.h #include reg51.h //-------------
[单片机]
51单片机播放音乐(一):蜂鸣器
蜂鸣器 蜂鸣器分为有(震动)源的和无源的,有源的无法控制频率,所以用无源的才能播放音乐。无源蜂鸣器需要自己控制输入变化的信号才能发声,最简单的就是输入方波信号了,通过单片机控制方波的频率就能发出不同音调的声音 这是发出50%占空比方波的代码: int i; while (1) { for (i = 0; i 10; ++i); // 改变循环次数可以改变方波频率 P1_0 = 1; for (i = 0; i 10; ++i); P1_0 = 0; } 乐谱转成循环次数 首先要有蜂鸣器乐谱,就是用频率和持续时间表示一个音符的乐谱,至于如何获取蜂鸣器乐谱可以看我上一篇文章。由于单片机的运行速度很慢,如果在单片
[单片机]
51<font color='red'>单片机</font>播放音乐(一):蜂鸣器
德州仪器新发布符合 AEC-Q100 标准的 MSPM0 MCU,助力优化汽车车身控制模块设计
汽车已经成为现代人出行的必备工具,随着科技的进步,它不仅提供了便捷的交通方式,还逐渐成为未来生活的“第三空间”。驾驶者和乘客对汽车的舒适性和功能安全性也提出了更高的要求,这也推进了车身控制领域 MCU 的智能化发展。 为了满足这一需求,德州仪器进一步拓展了 MSPM0 家族的应用布局,推出了全新的车规级通用 MCU。该系列面向车身控制应用,实现从工业级到车规级的拓展。德州仪器 MSP 微控制器业务副总裁兼总经理 Vinay Agarwal 也就此次 MCU 车规级芯片的发布接受了媒体访问。 符合车规级 AEC-Q100 标准,高性能、低功耗的出色结合: MSPM0-Q1是基于 Arm® Cortex®,符合汽车
[嵌入式]
德州仪器新发布符合 AEC-Q100 标准的 MSPM0 <font color='red'>MCU</font>,助力优化汽车车身控制模块设计
基于STM32单片机的盆栽系统设计
一.系统设计 本次盆栽系统的设计使用STM32单片机作为控制中心,通过光敏模块检测光照强度,通过DHT11测量温湿度,通过土壤湿度传感器检测土壤湿度,检测到的数据通过LCD显示屏显示,当土壤湿度低于下限时,继电器控制灌溉,当土壤湿度高于上限时,继电器控制除湿,当温度低于阈值时,继电器控制加热,当光强低于阈值时,继电器控制补光。 图1 系统框图 二.硬件设计 本设计所采用的STM32F103C8T6是以Cortex-3为核心的单片机,它的功能是实现软件的执行,并对外部的器件、模块进行控制。该系统由LCD显示模块,温湿度检测模块,光敏电阻模块,湿度检测模块,继电器模块组成。 图2 硬件电路 三.软件设计 系统的软件实现过程中首
[单片机]
基于STM32<font color='red'>单片机</font>的盆栽系统设计
什么是时钟树架构
2.1 时钟树结构图 STM32属于Cortex-M3内核的单片机,时钟结构比之前的51单片机较复杂的多,根据数据手册,STM32F103的时钟结构如下图所示。 根据上图可以看到,STM32F103系列单片机具有4个时钟源,内部的8MHz时钟发生器,外部的晶体振荡器接口,最高支持16MHz,外部的32.768kHz晶体振荡器接口和内部的40kHz时钟发生器,其中32.768kHz和40kHz主要用于内部RTC时钟脉冲,8MHz的晶振通过PLL时钟倍乘器,将系统总线时钟提高为72MHz。 STM32F103系列内部具有2条外设时钟总线,APB1和APB2,其中APB2的时钟最高可达72MHz,APB1的时钟最高可达36MHz
[单片机]
什么是时钟树架构
AVR/C51和PIC八位单片机性能比较
八位单片机由于内部构造简单,体积小,成本低廉,在一些较简单的控制器中应用很广。即便到了本世纪,在单片机应用中,仍占有相当的份额。由于八位单片机种类繁多,本文仅将常用的几种在性能上作一个简单的比较,供读者在使用时作参考。 1. 51系列   应用最广泛的八位单片机首推Intel的51系列,由于产品硬件结构合理,指令系统规范,加之生产历史 悠久 ,有先入为主的优势。世界有许多著名的芯片公司都购买了51芯片的核心专利技术,并在其基础上进行性能上的扩充,使得芯片得到进一步的完善,形成了一个庞大的体系,直到现在仍在不断翻新,把单片机世界炒得沸沸扬扬。有人推测,51芯片可能最终形成事实上的标准MCU芯片。   51系列优点之一是它从内部的
[单片机]
利用ST MCU内部基准参考电压监测电源电压及其它
在使用ST MCU开发过程中,有人问如果电源电压是变动的,询问有无办法用比较简洁的办法对电源电压进行监测,或者说电源电压波动情况下能否检测出其它待测的AD输入电压。 这里跟大家分享交流一个方法。就是在没有其它外来参考电压,用芯片电源电压VDD作为ADC的参考电压,同时该电源电压又在一定范围内变动的情况下【这个范围就是在保证芯片正常工作的范围】,利用MCU芯片内部自带基准电压对电源电压进行监测。 在我印象中【ST MCU系列和型号太多了,记不住】,几乎每颗ST MCU芯片内部都有个相对稳定且不受电源电压一定范围内波动影响的基准电压。这里以STM8L15x 芯片为例来介绍。 STM8L151系列芯片内部有个参考输出电压,ST
[单片机]
利用ST <font color='red'>MCU</font>内部基准参考电压监测电源电压及其它
几种常用单片机介绍
单片机种类繁多,但是一般常用的有以下几种: ATMEL公司的AVR单片机 ,是增强型RISC内载Flash的单片机,芯片上的Flash存储器附在用户的产品中,可随时编程,再编程,使用户的产品设计容易,更新换代方便.AVR单片机采用增强的RISC结构,使其具有高速处理能力,在一个时钟周期内可执行复杂的指令,每MHz可实现1MIPS的处理能力.AVR单片机工作电压为2.7~6.0V,可以实现耗电最优化.AVR的单片机广泛应用于计算机外部设备,工业实时控制,仪器仪表,通讯设备,家用电器,宇航设备等各个领域. Motorola单片机 : Motorola是世界上最大的单片机厂商.从M6800开始,开发了广泛的品种,4位,8
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved