基于ARM9的心电除颤模拟发生系统设计

发布者:牟牟的侬最新更新时间:2010-08-24 来源: 电子设计工程关键字:ARM9  信号处理  医用监护  心电除颤 手机看文章 扫描二维码
随时随地手机看文章

      随着社会的发展,人们的医疗保健意识越来越强,所以医生的培训也就成为非常重要的环节。心电除颤技术作为医生培训的一个主要方面,若操作规范,动作熟练,往往在紧急关头可以救人于危难之间,在培训的时候,如果能够真实地模拟急救除颤的场景,将会起到良好的学习效果。因此,在急救、有创性临床操作训练上,医学模拟教学日益显示出其成本低、重复性高、教学效率高以及符合医学伦理要求等优势。 

  除颤模拟发生系统可以任意选择34种状态(包括成人和儿童两大类)时也可以连接医用监护仪,使除颤模拟更加逼真。学员可以进行不同能量的除颤练习,同时这也便于老师检验学员的学习效果。 

  该系统是根据心电图的有关原理以及监护仪的信号合成原理研制的,严格按照医学的相关规定,产生的波形达到医学教学的目的。在相关病态心电图的关键点处达到比较逼真的效果,当系统接收到高压除颤信号以后,根据系统的预设置,进行相应的波形变换。系统可以用于医疗培训机构的培训工具,使学员快速掌握心电除颤的方法。该系统与急救模拟人、监护仪配合使用,具有广阔的市场前景。 

  本文介绍的心电除颤模拟发生系统是以ARM9为控制核心,充分利用ARM9丰富的I/O资源和强大的处理功能。它采用嵌入式的开发方案,并综合考虑系统的通用性和使用性,系统输出信号的幅度为0~5 mV可以连续输出室性、室上性早搏型号等,还可以产生周期为1 s,脉宽为100 ms,幅度为1 mV的方波。便于对监护仪进行校准,信号均采用三导联的同步信号输出。 

1 系统结构和设计方案 

  系统主要包括ARM9中央处理单元、高压除颤信号采集模块、D/A转换模块,与监护仪信号匹配模块以及心电波形仿真和数据的提取,应用程序的设计等几个部分。本系统采用ARM9嵌入式开发平台,以下是ARM9处理器的主要结构及其特点。 

  (1)32 b定点RISC处理器,改进型ARM/Thumb代码交织,增强性乘法器设计,支持实时(real-TIme)调试; 

  (2)片内指令和数据SRAM,而且指令和数据的存储器容量可调; 

  (3)片内指令和数据高速缓冲器(Cache)容量从4 KB~l MB: 

  (4)设置保护单元(Protoction Unit),非常适合嵌入式应用中对存储器进行分段和保护; 

  (5)采用AMBA AHB总线接口,为外设提供统一的地址和数据总线; 

  (6)支持外部协处理器,指令和数据总线有简单的握手信令支持; 

  (7)支持标准基本逻辑单元扫描测试方法; 

  (8)支持BIST(Built-in-self-test); 

  (9)支持嵌入式跟踪宏单元,支持实时跟踪指令和数据。 

  心电除颤模拟发生系统总体设计方案,如图1所示。


 

2 系统硬件部分设计 

  该部分主要分为ARM9硬件平台、D/A转换、滤波电路、高压除颤信号的采集,其系统硬件连接图如图2所示。系统在ARM9的控制下,由D/A转换把波形数据转换为模拟量进行输出。当接收到高压采集信号后,处理器就会转换输出另一种心电波形图。

  2.1 D/A转换和电阻衰减网络 

  该部分是系统的核心,为了保证系统的稳定和ECG信号的要求,D/A转换芯片采用8位并行的DAC0832芯片,由12 V单电源供电,每个DAC有各自独立的基准输入,对ARM9提供的数据进行变换,输出部分采用4阶巴特沃斯滤波,输出的波形经衰减后得到所要求的心电信号,经有源滤波后输出波形的峰值可达到10 V,通过电阻分压网络得到0~5 mV的电压输出范围。考虑到要采用三路D/A,如果每一路独占8个I/O端口,再加上若干控制端口,处理器提供的I/O端口数远不能满足要求,所以计划采用共用数据端口,外接I/O口片选的方式来实现,这样可以节约16个I/O口,也满足了信号输出同步性的要求。 

  2.2 高压信号采集电路设计 

  该部分采集除颤器上的高压放电信号,由于高压除颤信号具有的放电电流具有双向性,且放电时间只有4 ms,瞬态电压可达到3 000 V,所以在安全性能上要充分考虑。该部分电路图如图3所示。

  [page]

  电路中采用大功率电阻和瞬态抑制二极管对高压放电信号进行预处理,将高压信号降低到比较小的范围,通过整流电路把电流变为单向流动,然后通过光耦隔离输入到ARM9的I/O口中,起到保护处理器的作用。 

3 软件设计 

  系统的硬件为基本功能和扩展功能的实现奠定了牢固的基础,软件系统的设计就是要充分利用硬件平台的资源,实现软件操作的有序运行。 

  软件开发工作涉及到以下两个方面:接口驱动程序的修改和完善;应用层软件的开发。应用层的程序全部用C++开发完成的。

图4是整个系统的软件模块结构图。

  3.1 D/A驱动程序和高压信号采集驱动部分 

  设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作,以往在开发应用程序时都有一个main函数作为程序的入口点,而在驱动开发时却没有main函数,模块在调用insmod命令时被加载,此时的入口点是init module函数,通常在该函数中完成没备的注册。同样,模块在调用rmmod函数时被卸载,此时的入口点是cleanup module函数,在该函数中完成设备的卸载。在设备完成注册加载之后,用户的应用程序就可以对该设备进行一定的操作,如read,write等,而驱动程序就是用于实现这些操作,在用户应用程序调用相应入口函数时执行相关的操作,init roodule入口点函数则不需要完成其他如read,write之类功能。
驱动程序主要函数如下:

  3.2 系统应用程序设计与实现 

  该系统的应用程序是基于Qt/Embedded设计的,目前使用的嵌入式GUI系统存在Microwindows,MiniGUI,Qt/Embedded,Qt/Embedded延续了Qt的强大功能,可以运行在多种不同的处理器上部署的嵌入式Linux操作系统。Qt/Embedded提供了信号和插槽的编程机制,该部分采用的Qt是一个创建GUI程序的C++类库,编写Qt应用程序的主要工作是基于已有的Qt类编写用户类。该部分主要分为波形界面的实现和用户按键控制的实现,波形显示采用Qt的函数类库Qpainter,由于波形界面显示两路心电波形,会产生延迟效果,所以引入了多线程机制协调,Qt支持多线程,有独立于平台的线程类,线程安全方式的时间传递和一个全局Qt库互斥量允许不同的线程调用Qt方法。 

4 结语 

  本系统设计采用三星2440嵌入式处理器作为核心搭建了硬件平台,并采用嵌入式Linux操作系统并结合外围的D/A转换部分、与监护仪匹配网络、高压信号采集部分、应用程序控制部分等实现了心电除颤模拟发生系统的设计。该系统可以很好地模拟医学除颤的过程,并可以与医用监护仪相连接,输出符合医学标准的34种常见异常心率波形,由于系统使用嵌入式实时多任务操作系统,因此该设计具有很高的实时性、稳定性和可靠性。

关键字:ARM9  信号处理  医用监护  心电除颤 引用地址:基于ARM9的心电除颤模拟发生系统设计

上一篇:Jointwave携H.264编码器进军日本医疗设备市场
下一篇:ADI 的 MEMS 运动检测技术帮助实现 CPR 救援设备

推荐阅读最新更新时间:2024-03-16 11:39

ARM9的中断处理技术详细深入剖析-三星S3C2440处理器
1、中断的生命周期 中断信号产生(中断源)—》中断信号过滤(中断控制器)—》中断信号处理(CPU) 1.1 中断源 在中断的生命周期中,中断源的作用是负责产生中断信号。 S3C2440支持60个中断源(包含子中断源,不包括EINT8_23等里面的独立中断源,例如串口的发送中断、接收中断、错误中断属于串口的子中断源。); S3C6410支持64个中断源; S5PV210支持93个中断源; 1.2 中断控制器 1.3 中断处理 1)非向量方式(2440) 2)向量方式(6410/210) (对于向量方式,是直接进入中断函数(而不是跳转到中断程序总入口),因为中断函数(的地址)保存在相应寄存器里,根据相应中断源跳转
[单片机]
布局嵌入式:TI新推可扩展Sitara ARM9 MPU
  “整个ARM MPU市场是非常大的,”德州仪器(TI)中国区应用处理器与低功耗DSP业务拓展经理牟涛告诉EEWORLD,该市场2010年整个容量达204亿美元,其中工业电子年均复合增长率为27.8%,医疗电子增长尤为显著,高达65.4%。TI非常希望在这样的市场有一番作为,因而会加大投入,陆续推出一系列新品。   为满足工业、医疗及消费等领域高度互连的需求,德州仪器 (TI) 4 月 7 日宣布推出 4 款提供多种集成型连接选项的全新 Sitara™ ARM9 微处理器 (MPU) 与相应的评估板 (EVM),可为嵌入式工业、医疗以及消费类设计开发人员提供支持各种特定行业外设与接口的高灵活架构。   与其它 ARM9 产品
[嵌入式]
布局嵌入式:TI新推可扩展Sitara <font color='red'>ARM9</font> MPU
基于研华CPCI总线架构设计的实时图像信号处理平台
一. 系统设计的相关技术 1.1 DSP+FPGA混用设计简介     为了提高算法效率,实时处理图像信息,本处理系统是基于DSP+FPGA混用结构设计的。业务板以FPGA为处理核心,实现数字视频信号的实时图像处理,DSP实现了部分的图像处理算法和FPGA的控制逻辑,并响应中断,实现数据通信和存储实时信号。      首先,本系统要求DSP可以满足算法控制结构复杂,运算速度高,寻址灵活,通信能力强大的要求。所以,我们选择指令周期短、数据吞吐率高、通信能力强、指令集功能完备的DSP。同时也考虑了DSP功耗和开发支持环境等要素。     由于从探测仪传来的低层A/D的信号,其差值预处理算法的数据量大,对处理速度的要求高,但运算结构
[嵌入式]
数字信号处理架构下FPGA,ARM,DSP的对比
从数字信号处理架构来对比FPGA,ARM,DSP的优势,使用Theano,Python,PYNQ和Zynq开发定点Deep Recurrent神经网络,如何在 Zynq UltraScale+ MPSoC 上实现 Linux UIO 设计。 基于Xilinx FPGA的视频图像采集系统 可编程逻辑实现数据中心互连 使用系统优化编译器加速汽车电子产品设计 如何高效的编写Verilog HDL——进阶版 基于FPGA的HDMI高清显示接口驱动 使用系统优化编译器加速汽车电子产品设计 FPGA仿真篇-使用脚本命令来加速仿真二 1.内容概要 信号处理系统一般不单单是模拟信号或者数字信号,一般两者都会有。信号的处理关注的是信号以及信
[单片机]
数字<font color='red'>信号处理</font>架构下FPGA,ARM,DSP的对比
Arm全新汽车图像信号处理器 加速驾驶辅助与自动化技术的导入
Arm宣布推出Arm® Mali™-C78AE ISP,为其专为汽车应用的性能和安全而设计的IP产品组合再添新成员。搭配Cortex®-A78AE与Mali-G78AE的Mali-C78AE,可提供完整的ADAS图像数据处理流水线,能够优化性能、最大限度地降低功耗,并提供一致的方法来实现功能安全,从而驱动ADAS在下一阶段的量产导入。 根据调研机构Strategy Analytics近期的一份报告显示,从2020年到2025年,汽车摄像头市场总值的增长预计将达19%以上,使其成为可为车辆提供对周围环境做出决策所需的数据的最重要传感器类型。 Arm汽车和物联网事业部副总裁Chet Babla表示:“随着车载摄像头数量和精密程
[汽车电子]
Arm全新汽车图像<font color='red'>信号处理</font>器 加速驾驶辅助与自动化技术的导入
思科公司选择ADI公司的数字信号处理器用于高清晰度远程会议解决方案
——Blackfin 处理器使实时高清晰度的视频压缩成为可能。 美国模拟器件公司( Analog Devices, Inc. ,纽约证券交易所代码 : ADI ),今日在马萨诸塞州诺伍德市( Norwood, Mass. )发布,其数字信号处理专家经验已经用于思科 (Cisco) 公司开创性的可视化协作解决方案中,支持在现有的企业网际协议 ( IP )网络上进行高清晰度( HD )、 “ 面对面 ” 交流的通信。 Cisco 远程会议系统在视频通信方面创新的关键在于它采用 ADI 公司的 Blackfin? 处理器来处理高质量、实时、 HD 视频压缩算法。 Cisco 远程会议解决方案以如此清
[焦点新闻]
基于ARM9嵌入式平台的多标签多协议RFID读写器设计
1 RFID系统结构原理 无线射频识别技术是一种非接触的自动识别技术,常称为感应式电子晶片或近接卡、感应卡、非接触卡、电子标签、电子条码等。完整的RFID阅读系统是由读写器(Reacler)、应答器(Transponder)、天线(Antenna)三部分组成。其动作原理为Reader通过Antenna发射特定频率的无线电波能量给Transponder,用以驱动Transponder电路将内部ID Code送出,此时ReaGler便接收此IDCode。由于此ID Code的唯一性,所以RFID读写器可以实现对物体或商品的自动识别。RFID系统框图如图1所示。系统由中间件、读写器、应答器等部分组成。 射频识别系统的基本工
[单片机]
基于<font color='red'>ARM9</font>嵌入式平台的多标签多协议RFID读写器设计
基于ARM平台的心电信号处理系统设计
据统计,我国目前有县及县级以上医院1.3万家,医疗机械总数达17.5万台,加上一些专业心脏疾病治疗机构,我国目前每年心脏疾病的门诊量约在一千万人次以上。根据国家卫生部《全国卫生信息化发展规划纲要》的目标,在2010年要基本实现医院的数字化和信息化。所以未来医疗器械市场对新型医疗设备的市场空间巨大,特别是拥有数字化和信息化特征的心电信号处理系统具有广阔的应用前景和实用价值。本文就是介绍的一种基于ARM的心电信号处理系统设计。 系统总体设计 本文所介绍的系统的主要功能是对心电信号进行实时的处理和传输,系统原理框图如图1所示。 心电信号通过电极提取进入模拟处理模块,在模拟处理部分经过放大和滤波处理后,提高了信号的强度和
[单片机]
基于ARM平台的<font color='red'>心电</font><font color='red'>信号处理</font>系统设计
热门资源推荐
热门放大器推荐
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved