一种便携式心电监护仪前置放大电路和抗干扰的设计(一)

发布者:EtherealHeart最新更新时间:2018-09-02 关键字:便携式心电监护仪  前置放大器  滤波器  差动放大电路 手机看文章 扫描二维码
随时随地手机看文章

监护仪是一种用以测量和监控病人生理参数、并可与已知设定值进行比较、如果出现超差可发出报警的装置或系统。便携式监护仪小型方便,结构简单,性能稳定,可以随身携带,可由电池供电,一般用于非监护室及外出抢救病人的监护。导联系统采用通用的三电极方式,右胸上电极及左腹下电极为心电采样电极,右腹下电极为右腿驱动电极。这种联接方式有效实用,有利于便携使用。便携式监护仪分析处理系统可以分为两大部分,一是携带在被检查者身上的袖珍监护仪,另一为由微机系统组成的心电图处理诊断系统。被检查者将某一时段的动态心电信号由监护仪记录下来,通过GPRS通信方式将数据传送到医院的心电图处理诊断系统中。


体表心电信号的频率主要集中在0. 05~ 100Hz,幅度为10μV~ 4mV (典型值为1mV ) ,是一种低频率的微弱双极性信号。它淹没在许多较强的干扰和噪声之中。这些干扰主要包括肌电信号、呼吸波信号等体内干扰信号和以50Hz工频干扰、电极与皮肤界面之间的噪声为主的体外电磁场干扰信号的影响。因此,要对心电信号进行精确测量,必须设计出性能优良的放大器。放大器的核心和关键是前置级的设计。整个前置级电路是由前置放大电路和滤波电路构成,其结构见如图1.

 

前置级电路框图

 

1 前置放大电路


便携机前置放大电路是对心功能进行自动检测的关键部件,要求该系统能在强的噪声背景下,通过体表传感器不失真地将心电信号检测出来,放大至合适的幅度,送入A/ D变成数字信号,供计算机分析处理。


根据心电信号的特点以及通过电极提取的方式,前置级应满足下述要求:


(1)高输入阻抗。通过电极提取的心电信号是不稳定的高内阻源的微弱信号,为了减小信号源内阻的影响,必须提高放大器的输入阻抗;


(2)高共模抑制比CM RR.人体所携带的工频干扰以及所测量的参数以外的生理作用的干扰,一般为共模干扰。前置级采用CM RR高的差动放大形式,能减小共模干扰向差模干扰的转化;


(3)低噪声、低漂移;


(4)高安全性,以确保人体的绝对安全。


1. 1 差动放大电路


对于心电信号而言,采集的信号属于差模信号,因此采用三运放差动放大电路作为第一级放大电路,它具有输入阻抗高(一般达109 欧以上) ,低偏置电流,高共模抑制比,单端输出的特点。它在基本运算放大器的基础上每个输入端各连接一个同相放大器。所以差动放大电路的第一级是两个同相放大器( U 1A和U 1B) ,第二级是一个差分放大器( U 1D)。总的电压增益A u等于两级增益之积。由于第一级采用同相输入,有较高的输入电阻,电路的平衡对称结构对由共模抑制比、失调及温度等产生的输出误差电压具有抵抗作用。第二级差放电路将双端输入变单端输出。把两级电路级联后,他们相互取长补短,使组合后的这个电路具有输入阻抗高、电压增益调节方便、共模抑制比和漂移相互抵消等一系列优点。运放U 1C是一个积分电路,它的作用是和U 1D共同构成一个负反馈电路,来消除基线变化对输出信号的影响,稳定输出电压。由于采用串联反馈形式,使放大电路有较高的输入阻抗,减小失真的产生。


计算放大器的增益如下:R5= R7= R', R4= R8= R''


因此,差动放大电路的总增益为:

差动放大电路

 1.2 单极性调整电路


心电信号是一种低频率的双极性信号。对于由电池供电的便携机来说,结构简单,降低功耗是它的重要特性。为此,我们设计了一个直流分压电路,把心电信号抬升为正电平范围内的单极性的信号。为了使运算放大器工作在线性放大区内,我们把该直流电压设定为VCC(3.3V)的一半。


1.3 放大级电路


由于Ui2的信号是由直流信号和微弱的心电信号构成的。第二级放大电路的作用是放大心电信号,而使直流信号保持比较稳定的状态。为此,调整VR2的位置,使Uc的电压与Ui2的直流分量相等,则Ui2的直流分量不会被U2D放大。

 

放大级电路

 

Uo2= U-=Ui2放大级电路的增益为:

由此可得到前置放大电路总的增益接近为600,可以使毫伏级的心电信号放大到伏级,并处于0V到2. 5V之间。


2 抗干扰硬件设计方案


对心电监护仪器来说,评价其整体性能的好坏的首要标准是心电信号在不失真的前提下具有较高的抗干扰能力,而且安全可靠。为避免干扰所造成的影响,最有效的措施是消除干扰源。但在实际应用中,不可能完全将干扰源排除,所以要在硬件电路上采取措施来提高系统的抗干扰性。通常采用的措施可分为两类:一类是消除干扰进入系统的通道;另一类是削弱系统对干扰信号的灵敏度。


2. 1 提高前置放大器的输入阻抗和共模抑制比


人体置身于充满电磁场的空间,恰如一个天线接收器,人体上感应有各种频率的电压,对心电仪器的输入端大多以共模电压形式存在,其中最强的是由动力线通过分布电容耦合到人体的50Hz交流电压。对共模信号的抑制包括提高前置放大电路的共模抑制比( CM RR)和提高电路、导联和电极电气特性的对称性,以提高输入阻抗这两个方面。


通过采用高精密度、高共模抑制比的集成运放器件来搭建三运放的差动放大电路,可以提高共模抑制比。值得注意的是放大器的实际共模抑制能力受到放大器前边电极系统的影响。通过两个电极提取生物电位时,两个等效源阻抗一般不相等,其数值大小与人体汗腺分泌情况、皮肤清洁程度有关。各个电极处的皮肤接触电极是不平衡的,而且因人而异。这种不平衡造成的危害是共模干扰向差模干扰的转化,从而造成共模干扰的输出。对于已经发生的这种转化,放大器本身的共模抑制能力再高也将无济于事。但是,提高放大器输入阻抗,则会减小这一转化。


2. 2 设计硬件滤波器消除高频干扰


由于心电信号属于低频信号,而高频干扰相对心电信号比较高,所以低频的截止频率可以在一个比较宽的范围内选取,一般的心电图机或监护仪选取低通的截止频率为90 ~ 120Hz.考虑到便携机结构简单的特点,低通滤波器的设计采用了一阶滤波电路。以后介绍的软件滤波也将配合用来消除高频干扰。

2. 3 设计硬件滤波器消除工频干扰


工频干扰属于共模信号,对心电信号的干扰特别强。因此,必须从模拟、数字两方面加以抑制。工频干扰的消除在模拟电路中可用二阶压控电压源带阻滤波器来实现。参数选取如下:

工频滤波器


关键字:便携式心电监护仪  前置放大器  滤波器  差动放大电路 引用地址:一种便携式心电监护仪前置放大电路和抗干扰的设计(一)

上一篇:新型智能心电监测衣:能提前数天预警,预检率有望达到95%甚至更高
下一篇:一种便携式心电监护仪前置放大电路和抗干扰的设计(二)

推荐阅读最新更新时间:2024-03-16 12:14

EMI滤波器的设计原理
    摘要: EMI滤波器能有效抑制电网噪声,提高电子仪器、计算机和测控系统的抗干扰能力及可靠性。详细阐述了EMI滤波器的设计原理、典型应用及测试方法。     关键词: 电磁干扰 EMI滤波器 电源噪声 测试 插入损耗 随着电子设计、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。 电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统
[电源管理]
Melexis 推出集成红外带通滤波器 QVGA 分辨率飞行间传感器芯片
Melexis 推出集成红外带通滤波器的 QVGA 分辨率飞行时间传感器芯片 MLX75026 搭载全集成红外滤波器,可改善系统杂散光性能 2021 年 9 月 16日,比利时泰森德洛-全球微电子工程公司 Melexis 推出新款飞行时间 3D Camera 传感器 MLX75026,搭载全集成红外带通(IRBP)滤波器。集成 IRBP 后,镜头或传感器组件中不再需要额外搭载红外滤波器。这是一项行业领先的解决方案,降低了设计复杂性和成本,同时在采购镜头时有更多的设计选择。 Melexis 推出搭载 IRBP 的 MLX75026,这是一款符合 AEC-Q100 要求的 QVGA 飞行时间传感器芯片,进一步扩展了
[传感器]
Melexis 推出集成红外带通<font color='red'>滤波器</font> QVGA 分辨率飞行间传感器芯片
ADI推出低功耗的新一代生物电模拟前端
中国,北京 Analog Devices, Inc.,(ADI)全球领先的半导体公司,最近推出低功耗的新一代生物电模拟前端(AFE),利用它可实现尺寸更小、重量更轻、外观更隐蔽、电池续航时间更长的心脏监护设备。AD8233 AFE是一款全集成式单导联心电图(ECG)前端,设计成一个紧凑易用的器件。通常,开发人员需要以单个器件设计ECG前端,这会增加成本和设计时间。高度集成、即拆即用的AD8233 AFE消除了这些不必要的成本和额外时间,帮助开发人员更快地将产品推向市场。此外,该器件2.0mm 1.7mm的超小尺寸特性使得可穿戴健康设备能实现尺寸更小、重量更轻且更易穿戴的设计。对患者而言,穿戴大块头、笨重、显眼的监护仪会很不舒服,甚
[电源管理]
ADI推出低功耗的新一代生物电模拟前端
有源滤波器控制器的设计
1 引言 飞速发展的电力电子技术使各种电力电子装置在工业、交通运输及家庭中的应用日益广泛,而这些非线性负荷带来的谐波危害也日益严重。谐波使电网中元件产生谐波损耗、设备效率和功率因数降低,甚至损害电力设备如电容器等;谐波影响精密仪器和临近的通信系统,使其无法正常工作 。 电力系统中谐波次数和大小随系统负荷状况而变化,采用传统的LC静态滤波器无法满足要求,而采用电力有源滤波器可以对大小和频率都变化的谐波及变化的无功进行动态补偿,因此有源滤波器的研究和应用越来越受到人们的重视。有源滤波器的基本原理是:先从补偿对象中检测出谐波电流,再由补偿装置产生一个与该谐波电流大小相等而相位相反的补偿电流,两者相互抵消而使电网电流中
[模拟电子]
基于LCL型滤波器的光伏并网逆变器的设计方案
1 引言 近年来,新能源发电迅速崛起,光伏和风电并网成为一个重要的研究方向,作为并网核心器件的逆变器成为电力电子领域研究的一个新的热点。 为了抑制逆变环节中高频功率开关产生的高频谐波,并网系统引入LCL型滤波器,可以消除注入电网的高次谐波成分,但是它有不足之处,为三阶系统,容易产生谐振尖峰,引起振荡,甚至会影响整个系统的稳定性,所以必须改善对系统的控制策略,对其谐振问题进行有效的抑制,提高光伏并网的电能质量。 目前,国内外学者对LCL型滤波器提出了很多种控制策略,主要可以分为三种类型:基于电流的控制策略、基于虚拟同步电机控制策略和基于直接功率控制策略(DPC)。本文主要通过在对基于直接功率控制策略(DPC)原理研究分析的基础上,优
[电源管理]
基于LCL型<font color='red'>滤波器</font>的光伏并网逆变器的设计方案
一种实用的三相有源滤波器控制策略的研究
摘要:介绍一种实用的三相有源滤波器(APF)的控制策略,APF的主要电路拓扑采用三相四线制电压型变换器。其控制电路分为两部分:相电流基准的产生和滞环控制脉冲调制。相电流基准与相电压同相位,幅值则根据电源、有源滤波器和负载三者之间的能量平衡来确定。滞环控制脉冲调制使相电流在一个差带内追随基准而变化。当开关纹波被滤掉后,三相电流是功率因数高、失真小、对称的电流。试验结果证明基于这种控制策略的有源滤波器不仅能同时完成无功补偿、谐波抑制和三相电流平衡的三大功能,而且控制简单,可靠性高,补偿效果好。这些优点使它具有广阔的应用前景。 关键词:三相有源滤波器滞环控制脉冲调制无功补偿谐波抑制三相电流平衡 An Improved Contr
[工业控制]
一种实用的三相有源<font color='red'>滤波器</font>控制策略的研究
数字滤波器的MATLAB设计与DSP上的实现
摘要:以窗函数法设计线性相位FIR数字滤波器为例,介绍用MATLAB工具软件设计数字滤波器的方法和在定点DSP上的实现。实现时,先在CCS5000仿真开发,然后将程序加载到TMS320VC5409评估板上实时运行,结果实现了目标要求。文中还讨论了定标、误差、循环寻址等在DSP上实现的关键问题。 关键词:数字滤波器 MATLAB DSP 引言 随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。 1 数字滤波器的设计 1.1 数字滤
[应用]
基于Labview的相关滤波器的设计与改进
1 引言 在目前的测试领域中,越来越广泛地利用相关检测的方法进行滤波,利用相关滤波可以方便地从复杂的待测信号(包括有用信号、直流偏置、随机噪声和谐波频率成分等)中分离出某一特定频率的信号,在数字技术迅速发展以后,相关滤波也经常利用A/D板对信号采样后,在计算机中实现,成为数字滤波器的一种形式,本文设计了一种实现相关滤波的方法,这是相关分析在测试技术中的一个典型应用。图1所示为相关滤波器的典型框图。 Labview是美国国家仪器公司推出一种基于“图形”方式的集成化程序开发环境,是目前国际上唯一的编译型图形化编程语言,在以PZ机为基础的测量和工控软件中,Labview的市场普及率仅次于C++/C语言,Labview开发
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved