斯坦福大学AI100报告:“人工智能+医疗”五大场景,人机协作是大范围应用前提

发布者:Xiangtan最新更新时间:2019-02-18 来源: 动脉网关键字:人工智能  数字医疗  人机协作 手机看文章 扫描二维码
随时随地手机看文章

2014 年,斯坦福大学启动了“AI100”项目,即“人工智能百年研究”。该项目集结了各领域顶尖的研究人员,旨在研究并预测人工智能将如何发展,及其对人类和社会的影响。

“人工智能+医疗保健”一直被视为极具发展潜力的新兴领域。未来几年,基于人工智能的应用程序有望改善数百万人的健康状况和生活质量,并改进医务工作者和患者之间的交流方式。

动脉网(公众号:vcbeat)编译了AI100报告中与医疗有关的部分,本文的主要内容包括:

临床环境:AI助手帮助自动化问诊流程;

医疗分析:管理临床记录和患者数据、自动图像解译;

医疗机器人:人机工程学+智能自动化;

数字医疗:利用生物识别技术,提供个性化建议;

老年护理:多项创新技术为居家生活提供便利。

“AI+医疗”的主要应用领域包括:临床决策支持、患者监控和指导、辅助手术、患者护理的自动化设备以及医疗保健系统的管理等。例如,利用社交媒体来推测可能存在的健康风险,利用机器学习来预测疾病以及通过机器人来辅助手术。

然而,如何获取医生、护士和患者的信任,如何消除政策、法规以及商业上的阻碍,这些都是需要解决的问题。与在其他领域一样,数据都是关键的推动者。从个人监控设备加上移动应用程序、临床环境中的电子健康记录(EHR)到医疗机器人,研究人员不断创新,在收集有用医疗数据方面,取得了巨大进步。

但事实证明,相关人员很难利用这些数据为单个患者和患者群体提供更精准的诊断和治疗。过时的规章制度和激励机制都阻碍了产品的研发和上市。

在庞大且复杂的医疗系统中,人机交互方式不完善以及技术应用存在困难和风险,都为人工智能应用于医疗领域带来了挑战。通过减少或消除这些阻碍,加上不断的创新,数百万人的健康状况就能得到改善。

临床环境:AI助手帮助自动化问诊流程

几十年来,人工智能驱动的临床医生助理这一概念不断被提起。尽管有些“AI+医疗”的试点项目取得了成功,但目前的医疗系统在结构上仍然不能适应这一技术。

平价医疗法案中的激励措施加速了电子健康记录(EHR)在临床实践中的应用,但实施效果不佳,也让临床医生对其有效性产生了质疑。其中存在的问题包括,一小部分公司控制着EHR市场,以及公众普遍认为用户界面不符合标准,比如医生通常会忽略的弹出窗口。

由于以上问题以及监管方面的要求,通过人工智能,利用EHR的数据进行分析的愿景,在很大程度上仍未实现。

在未来15年,如果人工智能发展迅速,加上足够多的数据以及合适的系统,就有望改善临床医生的工作效率。目前,按照固定流程,患者会先对症状进行口头描述,然后医生们再将症状与已知疾病的临床表现联系起来。

如果以上流程实现了自动化,那么医生可以监督问诊过程,运用经验和直觉来指导输入过程,并评估机器的智能输出。医生的“实践”经验仍将至关重要。而其中,最大的挑战在于,如何将人性化的护理与自动化推理过程结合起来。

为了达到最佳效果,临床医生必须在一开始就参与进来,以确保系统的正常运行。目前,新一代医生已经精通这些技术,并开始在移动设备上使用专门的应用程序。与此同时,初级保健医生的工作量会大幅度地增加。

但是,只要解决监管、法律和社会方面的问题,就能极大地改善临床的分析,其中包括开发新的学习方法、通过自动分析科学文献来创建结构化的推理模式、通过自由对话的形式来创建认知助手等。

医疗分析:管理临床记录和患者数据、自动图像解译

人工智能可以分析数百万条患者临床记录,从而实现更准确、更个性化的诊断和治疗。随着全基因组测序成为患者的常规检查,基因型-表型的相关性分析也将成为可能。

比如,可以通过类似群组分析,即找到“相似患者”,来决定治疗方案。通过社交平台以及传统或非传统的医疗数据,来决定患者分组。而每一组都有一个专门的系统进行管理,系统由医疗服务提供者以及自动推荐和监控系统组成。如果将这一技术应用于数亿人的临床记录,就可能从根本上改善医疗服务。

此外,人工智能技术也可以提供个性化的医疗服务,比如,通过可穿戴设备自动获取个人环境数据,以产生个性化的分析和建议。目前,ShareCare等公司正在将这一技术应用于医疗场景。

然而,想要实现快速创新,仍然需要克服许多困难。FDA在批准创新诊断软件方面进展缓慢;HIPAA法案(健康保险携带和责任法案)要求保护患者隐私,这就为通过人工智能技术使用患者数据设置了法律障碍。批准的药物或产品可能会出现意料之外的负面影响,比如,用于分析药物相互作用的移动应用程序会被禁止从患者记录中提取必要的信息。

总的来说,由于缺乏普适的隐私保护方法和标准,医疗领域的人工智能研究和创新受到了阻碍。FDA迟迟没有批准创新软件,部分原因是无法权衡这些系统的成本与效益。如果监管机构(主要是FDA)意识到,上市后报告可以有效避免某些安全风险,那么它们可能会更快地批准新的治疗方式和干预措施。

几十年来,自动图像解译一直是一个极具发展潜力的领域。而这一领域取得的进展都引发了极大的关注,比如解译大量标记较弱的图像(如从网络上截取的大型照片)。在此之前,医学图像的解译并未取得如此大的进展。因为大多数医学成像方式(CT、MR、超声)本质上都是数字化的,图像都进行了存档,而且有大型的、技术成熟的公司(如西门子、飞利浦、通用电气等)专门从事成像研究。

但到目前为止,仍然存在一些障碍,限制了这一领域的发展。大多数医院的图像档案在过去十年才数字化。更重要的是,解决医学问题,依靠的并不仅仅是识别图像中的东西,而是对其作出准确的判断。而这些高风险的判断都会受到严格的监管。

即使有了最先进的技术,放射科医生可能还是需要查看图像,因此其判定的结果仍不具有说服力。此外,医疗保健法规禁止跨机构的数据共享。因此,只有像Kaiser Permanente这样的大型综合医疗机构才能解决以上问题。

尽管如此,自动/增强图像解译这一领域仍发展迅速。在未来15年,可能不会出现完全自动化的放射学,但对于图像“分流”或二级检查的初步尝试,有望提高医学成像的速度和成本效益。

结合电子病历系统,机器学习技术可大规模地应用于医学图像数据。例如,几个大型的医疗系统都存有数百万名患者的档案,每个档案都有相关的放射学数据。另一方面,相关文献表明,深度神经网络可以通过训练分析放射学的数据,并且具有较高的可信度。

医疗机器人:人机工程学+智能自动化

15年前,医疗机器人还只存在于科幻小说中。一家名为Robodoc的公司(IBM的子公司)开发了机器人系统,用于髋关节和膝关节置换等骨科手术。但该公司在商业上遇到了困难,最终公司倒闭,技术被收购。而最近,医疗机器人的研究和实际应用出现了爆炸式的增长。

2000年,Intuitive Surgical公司推出了达芬奇系统(the da Vinci system),这是一种用于微创心脏搭桥手术的新技术,后来被用于治疗前列腺癌。2003年,Intuitive Surgical与竞争对手Computer Motion合并。

目前,第四代 da Vinci系统,在人机工程学平台上,可提供3D可视化(相对于2D腹腔镜)服务。它被认为是腹腔镜手术的标准工具,每年使用近75万次,为研究手术过程提供了新的数据平台。

该系统将会对医疗人员如何参与护理过程进行更深入的学习,为各个领域的创新提供思路,其中包括新的仪器、图像融合以及新的生物标记物。此外,这个人机工程学平台的成功也带动了机器人手术领域的发展,其中比较有名的是Verb Surgical,它得到了Verily(原谷歌生命科学部门)和Ethicon(强生集团旗下一家医疗设备公司)的投资。

与机器人技术有关的另一领域是智能自动化。大约20年前,HelpMate公司发明了一种机器人,可以帮助医院运送食物和病历等物品。

最近,Aethon公司引进了TUG机器人,用于运送物资。但迄今为止,很少有医院在这项技术上进行投资。然而,机器人技术在其他服务行业(如酒店和仓库)被证明是实用且经济的,比如,亚马逊机器人公司(Amazon Robotics,原名Kiva)的创新应用。

在未来,各种医疗任务会因为机器人技术而变得更简单,但不会实现完全自动化。例如,机器人可以把物品送到医院病房,但随后仍需要人来将它们放在最终位置。在助行器的帮助下,患者可以更轻松地沿着走廊行走(但对于手术后康复的患者或老年患者来说,在挤满设备和患者的走廊上行走仍然很困难)。这些应用都表明,很多系统或技术都将涉及人与机器之间的密切交互。

自动化的发展将使人们对医疗过程有新的认识。从以往的应用来看,机器人技术并不是一门由数据驱动或面向数据的学科。然而,随着(半)自动化应用到医疗保健领域,这种情况正在发生变化。

随着患者护理平台的上线,量化和预测分析就建立在这些平台提供的数据之上。而这些数据将用于评估质量、识别错误以及改进性能。简而言之,这些平台将过程与结果联系起来,使真正的医疗“闭环”成为现实。

数字医疗:利用生物识别技术,提供个性化建议

到目前为止,基于证据的医疗分析都依赖于传统的医疗数据,主要是电子病历。在临床环境中,人工智能可以带来新的解决方案。例如,TeleLanguage让临床医生能够在AI助手的帮助下,与多位患者同时进行沟通并提供治疗。Lifegraph可以从患者智能手机收集的数据中,提取行为模式并发出警报,以色列的精神病学家已经利用相关产品,来检测患者的早期症状。

随着移动计算的发展,与“生物识别技术”相关的平台和应用程序将会不断出现。目前,已有成千上万的移动应用程序可以提供信息,矫正行为或者识别“相似患者”。这些应用程序,加上专业化的运动追踪设备(如Fitbit)以及家庭环境和健康监测设备之间的连接,将会给医疗领域带来创新。

通过结合社会数据和医疗数据,一些应用程序可以从捕获的数据中进行分析、学习和预测。虽然它们的预测相对简单,但这种数据和功能的融合可能会催生创新产品。比如某款运动应用程序,它不仅会提出锻炼计划,还会建议最佳锻炼时间,并提供指导,让你坚持锻炼计划。

老年护理:多项创新技术为居家生活提供便利

在未来的15年里,美国的老年人口将增长50%以上。美国劳工统计局预测,家庭健康助理人数在未来十年将增长38%。老年护理领域的创新应用包括,互动和通信设备、家用健康监测设备、运动辅助工具(如助行器)等。但在过去15年中,这一领域的发展却比较缓慢。

随着各种创新应用的出现,老年人对科技的接受程度也会发生改变。目前,70岁的老年人,可能在中年或更晚的时候,才第一次体验到个性化的信息技术,而50岁的人对新技术的接受度更高。因此,人工智能有巨大的市场潜力,可用于改善老年人的身体、情感、社会和精神健康。

生活品质与独立性

自动化交通工具帮助老年人更好地独立生活,并扩大他们的社会视野

信息共享将帮助家人之间的沟通,预测性分析可能被用来推动家庭的积极行为,比如提醒他们“给家里打电话”

家用智能设备将在需要时帮助进行日常活动,如做饭。如果机器人的操作能力提高,还可以帮助穿衣和洗漱

健康

监控活动的移动应用程序,加上社交平台,将为保持身心健康提出建议。

通过家庭健康监测并提供健康信息,能够检测情绪或行为的变化,并提醒护理人员。

个性化的健康管理

治疗方法和设备

助听器和视觉辅助设备将减轻听力和视力损失带来的负面影响,为老年人提供更安全的环境,改善与社会之间的联系

个性化的康复和家庭治疗将减少住院或护理设施的需要。

辅助设备(智能步行器、轮椅等)将扩大体弱者的活动范围

研究人员预计,低成本的传感技术将发展迅速,为老年人的居家生活提供便利。除了传感技术,整个智能系统还将涉及多个领域,比如自然语言处理、推理、学习、感知和机器人。

【参考资料】

https://ai100.stanford.edu/sites/default/files/ai_100_report_0831fnl.pdf


关键字:人工智能  数字医疗  人机协作 引用地址:斯坦福大学AI100报告:“人工智能+医疗”五大场景,人机协作是大范围应用前提

上一篇:科学家:生物医药研究使用AI技术或导致结论不准确
下一篇:面对苹果 “蓄谋已久”的健康生态,国内智能手机企业如何布局未来?

推荐阅读最新更新时间:2024-03-16 12:16

Nordic宣布收购TinyML供应商Atlazo
Nordic Semiconductor 已就收购美国人工智能和机器学习(AI 和 ML)公司 Atlazo 的知识产权 (IP) 组合达成协议。 此次收购是一项战术举措,旨在为这家挪威公司提供内部人工智能/机器学习能力,并在其低功耗物联网产品组合中进一步开发小型化边缘处理机器学习 (tinyML) 能力。 该交易尚待监管部门批准,费用未公开;它涵盖了 Atlazo 的八名工程师核心团队。 它还涵盖了用于健康应用的前端传感器技术,以及优化低功耗能源使用的边缘技术,允许在“给定任务的最低可能的功耗点上”进行计算。 该交易预计将于今年年底完成。 Atlazo 总部位于圣地亚哥。 一份声明称:“边缘设备的重要性日益增加,导致对网
[嵌入式]
KeepTruckin与Ambarella合作推出新型AI行车记录仪 可主动预防事故
8月12日,人工智能视觉芯片公司Ambarella和车队管理技术公司KeepTruckin宣布,通过采用Ambarella的CV22 CVflow®边缘人工智能视觉系统芯片(SoC),KeepTruckin推出全新人工智能(AI)行车记录仪(Dashcam)。该全新行车记录仪采用单个CV22 SoC,同时为其双摄像头系统提供AI和图像处理。其中,双摄摄像头系统集成了一个用于前置高级驾驶辅助系统(ADAS)和事件记录的摄像头,以及一个用于驾驶员监控系统(DMS)、带有驾驶员记录的RGB-IR摄像头。此外,凭借Ambarella行业领先的边缘AI处理每瓦性能,该CV22可使AI行车记录仪能够直接在小型设备上运行KeepTruckin专
[汽车电子]
KeepTruckin与Ambarella合作推出新型<font color='red'>AI</font>行车记录仪 可主动预防事故
科大讯飞发2代翻译机:2999元的价比手机App强在哪?
新浪手机讯 4月20日下午消息,科大讯飞在刚刚正式发布新款翻译机——晓译2.0。该机搭载了一块2.4英寸的触摸屏,支持34种语言互译、4种方言翻译以及中英文的离线翻译,最终产品售价2999元。   会议伊始,胡郁讲述了人工智能的历史以及机器翻译的两种模式。从“深度神经网络引入人工智能领域”这一话题开始引出了科大讯飞在这一行业的发展历程。   此外,科大讯飞公布了自16年底11月发布和17年3月上市以来,讯飞翻译机一代产品销量数据:累计销量过20万,覆盖了135个国家,服务次数达到了2000万次。值得一提的是,该款产品已经在前不久举办的博鳌亚洲论坛上亮相,担任分论坛内容的实时转写工作。   产品上,晓译2.0搭载了一块2.4英
[手机便携]
AI虚拟偶像:知识图谱赋予AI“生命感”
AI是个非常有趣的词,不管是中文翻译的人工智能,还是英文的Artificial Intelligence,都有“生物性”的含义。一个是集结了地球顶尖智慧的“人工”,另一个Intelligence则专指生物拥有的智慧。 不过在当今的AI风潮中,我们提到的种种AI应用大多属于机器学习——和生物性不沾边。AI可以从大量数据中寻找规律,经过训练完成种种工作,可给人的感觉依旧是一种更高效的机械。 这样的现象在语音助手上更为常见,很多厂商都会给语音助手起个名字,试图将其人格化,可当用户真正使用时,往往只能感受到工具感。语音助手可以听懂你需要播放音乐、叫车出行,也能在你要求下讲个笑话。可除了下达指令和获得反馈以外,语音助手很少能理解情绪、记忆
[机器人]
人工智能AI)如何改进网络容量规划?
网络容量规划旨在保证提供足够的带宽,从而可以可靠地满足网络SLA目标,例如延迟、抖动、丢包和可用性。这是一个复杂的、容易出错的工作,涉及严重的财务负担。直到最近,可提供有洞察力的容量规划所需的网络数据才基本上可通过静态、历史和事后报告获得。这种情况现在正在迅速改变。 “通过将先进的数据科学和认知技术(如人工智能和机器学习)结合起来,IT可以推动产生新的、更智能的预测性见解,从而提高网络容量规划的准确性,”德勤咨询公司负责认知分析的执行董事Ashish Verma说。“这有助于组织释放数据潜力,以制定更灵活的决策,提高运营智慧,避免停机,并创造更好的用户体验。” 尽管AI支持的网络容量规划仍处于初期阶段,但大多数容量规划供应商,包括
[机器人]
电装开发“云诊车”,助力汽车社会的可持续发展
2015年9月,联合国公布了《2030年可持续发展目标》(下称“SDGs”),至此全球企业社会责任进入到了SDGs时代。电装以“建设人、车、环境和谐共存的美好未来”为企业愿景,积极通过业务的开展解决社会课题。2020年,电装联手中国联通、元征推出的“云诊车”车辆诊修智慧型解决方案正式上市,利用先进的诊断技术和数据资源,扩大维修企业业务,提高维修效率,同时通过预防性维修保养,减少因突发故障而导致的车祸,为打造更加安全的汽车社会贡献一份力量。 发挥技术优势:业务中践行SDGs,长期推动可持续发展 在5G通信网络、大数据、物联网、人工智能等基础信息技术迅速发展的背景下,电装充分发挥自身在汽车系统零件开发及技术应用的深厚经验
[汽车电子]
电装开发“云诊车”,助力汽车社会的可持续发展
任正非:华为不做公共人工智能产品,不做小商品
  任正非给 华为 立下两条“军规”:1、迅速扩大 人工智能 战斗队伍;2、走向高度开放、多交朋友。下面就随网络通信小编一起来了解一下相关内容吧。   近日, 华为 旗下微信公众号“心声社区”刊载了公司总裁任正非在 华为 诺亚方舟实验室座谈会上的一次内部讲话。在讲话中,任正非谈到了华为的 人工智能 服务方向、研发重点、人才获取,以及华为与竞争对手关系等话题。   对于当下火热的 人工智能 投资,任正非指出:   社会人工智能投资正在泡沫化,这个超热泡沫化的抛物线见顶下跌时,这就是我们人工智能的战略机会点。我们就要及时把优秀的社会人才招进来,壮大我们的“野战军”。   具体来看,任正非认为华为的人工智能的研究分三部分:   1、研
[网络通信]
高压IGBT模块2SD315AI-33的应用研究
摘要:介绍了一种新型高性能高压IGBT集成驱动模块2SD315AI-33的管脚功能和工作原理,同时还给出了该模块与同类产品相比的显著性能特点,介绍了2SD315AI-33在“双逆变器-电机”能量互馈式交流传动试验系统中的应用方法,讨论了在实际应用中的注意事项。 关键词:IGBT 驱动模块 2SD315AI-33 逆变器 2SD315AI-33是瑞士CONCEPT公司专为3300V高压IGBT的可靠工作和安全运行而设计的驱动模块,它以专用芯片组为基础,外加必需的其它元件组成。该模块采用脉冲变压器隔离方式,能同时驱动两个IGBT 模块,可提供%26;#177;15V的驱动电压和%26;#177;15A的峰值电流,具有准确可靠的驱动
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved