让一个机器人透视你的身体,洞察你体内的蛛丝马迹,比经验丰富的老教授更快更准地找出你的沉疴暗疾,你是会觉得惊悚还是幸运?
在人工智能热潮兴起之初,吴恩达(Andrew Ng)、Jeffery Hinton等多位AI大佬放言,医疗领域AI会让放射科医生下岗失业。
在2019年的今天,才来谈论AI+医疗,好像显得有些不合时宜。毕竟,至少早在2017年起,智慧医疗的火焰已是如火如荼。
仿佛不远的未来,你就能和机器人医生面对面,由绝对精确的机器智能为你作出诊疗。
然而,时至今日,智慧医疗最大的突破,仍然主要限于基于计算机视觉技术的医疗影像辅助诊断之上。AI,距离完全取代医生,可能还差了一个比邻星到地球的距离。
在这一情况之下,聚焦于最为成熟的医疗影像AI领域,谈谈AI在做什么,AI公司在做什么,可能显得更为重要。
聚焦:医疗影像+AI
从公司门口的人脸识别到你手机里欺世盗貌的美颜相机,再到让李彦宏吃下罚单的自动驾驶,这些AI新浪潮的背后站着的,都是由深度学习驱动的计算机视觉技术。
从这里出发,当你在考虑AI如何应用在医疗中时,首先想到的可能就会是:
如何将在自然图像下日趋成熟的深度学习算法应用于医疗之中?
这个问题不难回答。
即使你从未进过医院影像科,也应该对CT、核磁共振(MRI)、B超等等检查有所耳闻。这些检查就像一台特殊的照相机,借助射线和声波为你体内的器官骨骼留下倩影,帮助医生对人体内的真实情况作出判断。
随着低剂量螺旋CT、核磁共振等技术的发展和推广,影像检查正变得更为安全、高效、准确,也更广泛地应用于定期体检和疾病诊断之中。仅2016年,全球诊断成像设备市场价值就高达227亿美元,增长率为2%。海量的医疗影像数据在帮助诊断之余,也让影像科医生的负担日益加重。
就以常见的CT来说,在影像医疗领域,CT是一个大趋势,所有的东西都能看清楚,但拍一次下来就有300多张影像,一个医生看下来是非常消耗时间和精力的。所以衍生出来的一个问题就是——需要大量的医生来“看片”。
深度学习AI算法的用武之地正在于此。
计算机辅助诊疗技术(Computer Aided Diagnosis: CAD)借助机器视觉算法,对医疗影像进行自动分析,帮助医生锁定病灶,提供诊断建议和依据。传统上,基于人工设计规则的算法在功能、准确度和速度上均有较多局限。深度学习算法的引入,让CAD的应用场景大大扩展。从早期癌症筛查到心血管异常,从神经疾病诊断到骨骼肌肉损伤,CAD系统的AI化浪潮已是如火如荼。
风口回归,竞争进入后半程
新技术的浪潮牵动千万病人的健康,亦牵动资本涌动。
据估计,到2023年,AI+医疗影像的市场规模将超过20亿美元。诸多创业企业、互联网巨头、医疗影像器械厂商纷纷投入重金,力求在这一战场占据一席之地。
不过在2019年的今天,前两年的资本风口渐渐回归理性,赛程进入后半场。
截止至2018年上半年,AI医疗影像初创企业已经募集逾5亿美元资本投入,资本从新兴初创逐渐转向晚期创业企业。纵观这一领域,整个2018年上半年,仅有加拿大医疗影像企业Circle Cardiovascular Imaging获得A轮融资,其他各企业均已进入B轮或之后的成熟阶段。
从战略方向上来看,企业也多由早期技术积累转向产品落地,企业与医院的合作、落地成为主议题,AI+医疗影像日趋成熟。
基于AI的医疗影像分析软件市场规模
AI+医疗,还是医疗+AI?
与自动驾驶领域的“车厂对阵AI巨头”的阵势颇有相似,在医疗影像AI领域,传统影像器械商和AI科技企业的双向竞技也正如火如荼。
以西门子(Siemens)、通用电气(GE)等为首的传统医疗影像器械厂商,正依靠其硬件和数据优势,对其传统影像分析算法进行“AI化”迭代升级,为医院提供整合性更强的一站式解决方案。
西门子的AI-Rad系统针对胸部CT影像,提供多方面的测量、定位和自动报告生成功能。比如,借助影像分割技术,找出胸部CT影像中大动脉的像素级定位,实现对动脉直径等多方面的自动化测量。该系统还利用目标检测技术,对体内器官的各项异常进行定位和初步诊断。
在早期肺癌筛查中,AI可以准确地识别出肺部小结节的位置所在,并对结节进行初步分析,帮助医生尽早做出诊断,大大提升早期肺癌的发现率。根据美国国家肺部筛查试点研究组的研究数据,借助肺结节早期筛查,逾20%的肺癌罹难者将有机会幸免于难。
除去AI技术上的转型,器械厂商对AI的系统化整合,成为他们在竞争中脱颖而出的重要法宝。2018年底,GE发布了Edison AI开发平台,实现数据、算法、硬件之间的无缝整合。现时,平台已经上线48个影像分析应用,为研发部门整合多来源、多模态的海量数据源,亦为医院提供各细分领域的辅助诊断服务。
长远来看,Edison的野心并不止于此。GE计划将平台对外开放,让合作开发者加入算法研发,打造AI医疗影像的“AppStore”生态,促成AI医疗影像技术的更好发展。
相比传统器械厂商的系统优势,医疗影像领域的AI技术公司便更多依靠自身算法突破建立竞争护城河。
其中,较大规模的创业企业和AI巨头企业们,选择多领域发力,在各方面与传统器械厂商展开正面角逐。
在美国市场上,以色列一家AI医疗影像公司Zebra Medical Vision推出了从骨骼、乳腺到肺部、心血管的多器官诊断产品,意图建立自身生态。
中国创业企业亦然。作为国内医疗影像AI领域估值最高的推想科技,推出了InferRead全系解决方案,覆盖脑部、肺部、骨骼等全部位影像诊断。
Zebra Medical Vision:骨骼诊断产品
较小规模的创业公司,则多聚焦垂直领域,在单一器官或单一病症上建立自己的技术优势。
英国一家初创企业Brainomix便是其中典型例子。它专注脑部影像分析,在中风的诊断与辅助治疗中建立起自身的独特优势,找到自己的发展方向。
Brainomix:脑部影像分析系统
英伟达旗下孵化的一家初创企业ImFusion则独辟蹊径,借助AI影像生成技术,开创了从二维平面超声影像生成三维立体模型的新方法。他们以对应病人的二维超声影像和三维CT影像作为训练数据,让AI找到二维和三维影像之间的潜在联系,从而帮助医生更好地理解、感知病人体内的状况。
专注于特定垂直领域,小企业更容易找到自身竞争突破点,却也留下了产品功能单一化的缺憾,产品的落地应用大大受限。这一情况下,中小企业往往要与器械厂商或AI巨头展开合作,将自身技术与生态平台相融合,实现产品的大规模落地部署。
目前来看,AI+医疗影像领域仍将长期处于竞争与合作交织,技术和产品共同推进的百花齐放阶段。
作为医疗影像领域的后发选手,中国在影像器械的赛道上,起步较晚,暂时缺席。不过,在AI算法的竞技中,依托本土AI人才和海量医疗数据,以推想科技、汇医绘影为代表的中国初创企业们已经成功找到自己的发展方向。不仅如此,腾讯、阿里、商汤等AI巨头企业也纷纷向医疗影像领域持续发力,弯道超车未来可期。
竞业者更是同盟军
所以,在2019年的今天,AI会让放射科医生下岗吗?
如今看来,虽然医疗影像AI已经取得长足进展,取代放射科医生仍显得言之甚早。
一方面,由于数据的限制,医疗影像AI的适用面仍然较窄。目前只有针对肺部结节、脑部肿瘤、骨科等少部分领域的AI技术相对成熟,大大限制了医疗影像AI的临床应用。
另一方面,深度学习本身的“黑盒”、不可解释的特性使得我们难以对其结果进行分析归因。不论是出于安全性还是医学伦理上的考虑,医疗影像AI在可预见的未来里仍只能扮演助理角色,难以成为最终的决策者。
除此之外,医疗影像的分析并不只依赖于图像自身。医生在对影像进行诊疗时会结合病人的病史、其他检查、疾病的相关医学知识进行综合考量。
相比之下,医疗影像AI大多情况下只能依靠图像内在的特征进行判断,使得较复杂的、与影像形态不直接相关的病情分析效果不佳。
不过,作为医生的助手,AI的精准检测可以有效减少漏诊情况,帮助医生快速定位相关病灶。自动生成的影像分析等数据资料也可以为医生提供良好的参考,大大提升他们的工作效率。这一点,在各医院影像检查数量均大幅增长的现在,显得尤为重要。
除此之外,放射科医生其实还扮演着AI的人生导师角色。深度学习算法需要大量的标注数据,这需要放射科医生的鼎力支持。比如在肺结节筛查任务中,医生需要预先标注成百上千张CT影像里的肺结节的具体位置、类型。借助这些训练数据,算法才能最终找到这些结节的隐含特征,实现准确的检测、分析。
目前看来,这场AI+医疗影像的变革,更多地是从普通马到汗血宝马式的渐进性进化,而非从马匹到汽车的时代革命。
与其担忧被取代下岗,放射科医生更应理性看待AI热潮,摒除“人工智能”这一名字的神秘光环,理解AI的长处与不足,让它成为工作的重要助力。
上一篇:ECR2019:器械+AI大势已定!GPS、三星、日立等巨头创新几何?国内企业潮向何方?
下一篇:想完成中高端眼科器械的进口替代,图湃影像自主研发扫频OCT视网膜诊断系统
推荐阅读最新更新时间:2024-03-16 12:16
- 热门资源推荐
- 热门放大器推荐