AI,会让放射科医生下岗吗?

发布者:诚信与爱最新更新时间:2019-03-14 来源: 硅谷密探 关键字:AI  放射科医生 手机看文章 扫描二维码
随时随地手机看文章

让一个机器人透视你的身体,洞察你体内的蛛丝马迹,比经验丰富的老教授更快更准地找出你的沉疴暗疾,你是会觉得惊悚还是幸运?

在人工智能热潮兴起之初,吴恩达(Andrew Ng)、Jeffery Hinton等多位AI大佬放言,医疗领域AI会让放射科医生下岗失业。

在2019年的今天,才来谈论AI+医疗,好像显得有些不合时宜。毕竟,至少早在2017年起,智慧医疗的火焰已是如火如荼。

仿佛不远的未来,你就能和机器人医生面对面,由绝对精确的机器智能为你作出诊疗。

然而,时至今日,智慧医疗最大的突破,仍然主要限于基于计算机视觉技术的医疗影像辅助诊断之上。AI,距离完全取代医生,可能还差了一个比邻星到地球的距离。

在这一情况之下,聚焦于最为成熟的医疗影像AI领域,谈谈AI在做什么,AI公司在做什么,可能显得更为重要。

聚焦:医疗影像+AI

从公司门口的人脸识别到你手机里欺世盗貌的美颜相机,再到让李彦宏吃下罚单的自动驾驶,这些AI新浪潮的背后站着的,都是由深度学习驱动的计算机视觉技术。

从这里出发,当你在考虑AI如何应用在医疗中时,首先想到的可能就会是:

如何将在自然图像下日趋成熟的深度学习算法应用于医疗之中?

这个问题不难回答。

即使你从未进过医院影像科,也应该对CT、核磁共振(MRI)、B超等等检查有所耳闻。这些检查就像一台特殊的照相机,借助射线和声波为你体内的器官骨骼留下倩影,帮助医生对人体内的真实情况作出判断。

随着低剂量螺旋CT、核磁共振等技术的发展和推广,影像检查正变得更为安全、高效、准确,也更广泛地应用于定期体检和疾病诊断之中。仅2016年,全球诊断成像设备市场价值就高达227亿美元,增长率为2%。海量的医疗影像数据在帮助诊断之余,也让影像科医生的负担日益加重。

就以常见的CT来说,在影像医疗领域,CT是一个大趋势,所有的东西都能看清楚,但拍一次下来就有300多张影像,一个医生看下来是非常消耗时间和精力的。所以衍生出来的一个问题就是——需要大量的医生来“看片”。

深度学习AI算法的用武之地正在于此。

计算机辅助诊疗技术(Computer Aided Diagnosis: CAD)借助机器视觉算法,对医疗影像进行自动分析,帮助医生锁定病灶,提供诊断建议和依据。传统上,基于人工设计规则的算法在功能、准确度和速度上均有较多局限。深度学习算法的引入,让CAD的应用场景大大扩展。从早期癌症筛查到心血管异常,从神经疾病诊断到骨骼肌肉损伤,CAD系统的AI化浪潮已是如火如荼。

风口回归,竞争进入后半程

新技术的浪潮牵动千万病人的健康,亦牵动资本涌动。

据估计,到2023年,AI+医疗影像的市场规模将超过20亿美元。诸多创业企业、互联网巨头、医疗影像器械厂商纷纷投入重金,力求在这一战场占据一席之地。

不过在2019年的今天,前两年的资本风口渐渐回归理性,赛程进入后半场。

截止至2018年上半年,AI医疗影像初创企业已经募集逾5亿美元资本投入,资本从新兴初创逐渐转向晚期创业企业。纵观这一领域,整个2018年上半年,仅有加拿大医疗影像企业Circle Cardiovascular Imaging获得A轮融资,其他各企业均已进入B轮或之后的成熟阶段。

从战略方向上来看,企业也多由早期技术积累转向产品落地,企业与医院的合作、落地成为主议题,AI+医疗影像日趋成熟。


基于AI的医疗影像分析软件市场规模

AI+医疗,还是医疗+AI?

与自动驾驶领域的“车厂对阵AI巨头”的阵势颇有相似,在医疗影像AI领域,传统影像器械商和AI科技企业的双向竞技也正如火如荼。

以西门子(Siemens)、通用电气(GE)等为首的传统医疗影像器械厂商,正依靠其硬件和数据优势,对其传统影像分析算法进行“AI化”迭代升级,为医院提供整合性更强的一站式解决方案。

西门子的AI-Rad系统针对胸部CT影像,提供多方面的测量、定位和自动报告生成功能。比如,借助影像分割技术,找出胸部CT影像中大动脉的像素级定位,实现对动脉直径等多方面的自动化测量。该系统还利用目标检测技术,对体内器官的各项异常进行定位和初步诊断。

在早期肺癌筛查中,AI可以准确地识别出肺部小结节的位置所在,并对结节进行初步分析,帮助医生尽早做出诊断,大大提升早期肺癌的发现率。根据美国国家肺部筛查试点研究组的研究数据,借助肺结节早期筛查,逾20%的肺癌罹难者将有机会幸免于难。

除去AI技术上的转型,器械厂商对AI的系统化整合,成为他们在竞争中脱颖而出的重要法宝。2018年底,GE发布了Edison AI开发平台,实现数据、算法、硬件之间的无缝整合。现时,平台已经上线48个影像分析应用,为研发部门整合多来源、多模态的海量数据源,亦为医院提供各细分领域的辅助诊断服务。

长远来看,Edison的野心并不止于此。GE计划将平台对外开放,让合作开发者加入算法研发,打造AI医疗影像的“AppStore”生态,促成AI医疗影像技术的更好发展。

相比传统器械厂商的系统优势,医疗影像领域的AI技术公司便更多依靠自身算法突破建立竞争护城河。

其中,较大规模的创业企业和AI巨头企业们,选择多领域发力,在各方面与传统器械厂商展开正面角逐。

在美国市场上,以色列一家AI医疗影像公司Zebra Medical Vision推出了从骨骼、乳腺到肺部、心血管的多器官诊断产品,意图建立自身生态。

中国创业企业亦然。作为国内医疗影像AI领域估值最高的推想科技,推出了InferRead全系解决方案,覆盖脑部、肺部、骨骼等全部位影像诊断。

Zebra Medical Vision:骨骼诊断产品

较小规模的创业公司,则多聚焦垂直领域,在单一器官或单一病症上建立自己的技术优势。

英国一家初创企业Brainomix便是其中典型例子。它专注脑部影像分析,在中风的诊断与辅助治疗中建立起自身的独特优势,找到自己的发展方向。

Brainomix:脑部影像分析系统

英伟达旗下孵化的一家初创企业ImFusion则独辟蹊径,借助AI影像生成技术,开创了从二维平面超声影像生成三维立体模型的新方法。他们以对应病人的二维超声影像和三维CT影像作为训练数据,让AI找到二维和三维影像之间的潜在联系,从而帮助医生更好地理解、感知病人体内的状况。

专注于特定垂直领域,小企业更容易找到自身竞争突破点,却也留下了产品功能单一化的缺憾,产品的落地应用大大受限。这一情况下,中小企业往往要与器械厂商或AI巨头展开合作,将自身技术与生态平台相融合,实现产品的大规模落地部署。

目前来看,AI+医疗影像领域仍将长期处于竞争与合作交织,技术和产品共同推进的百花齐放阶段。

作为医疗影像领域的后发选手,中国在影像器械的赛道上,起步较晚,暂时缺席。不过,在AI算法的竞技中,依托本土AI人才和海量医疗数据,以推想科技、汇医绘影为代表的中国初创企业们已经成功找到自己的发展方向。不仅如此,腾讯、阿里、商汤等AI巨头企业也纷纷向医疗影像领域持续发力,弯道超车未来可期。

竞业者更是同盟军

所以,在2019年的今天,AI会让放射科医生下岗吗?

如今看来,虽然医疗影像AI已经取得长足进展,取代放射科医生仍显得言之甚早。

一方面,由于数据的限制,医疗影像AI的适用面仍然较窄。目前只有针对肺部结节、脑部肿瘤、骨科等少部分领域的AI技术相对成熟,大大限制了医疗影像AI的临床应用。

另一方面,深度学习本身的“黑盒”、不可解释的特性使得我们难以对其结果进行分析归因。不论是出于安全性还是医学伦理上的考虑,医疗影像AI在可预见的未来里仍只能扮演助理角色,难以成为最终的决策者。

除此之外,医疗影像的分析并不只依赖于图像自身。医生在对影像进行诊疗时会结合病人的病史、其他检查、疾病的相关医学知识进行综合考量。

相比之下,医疗影像AI大多情况下只能依靠图像内在的特征进行判断,使得较复杂的、与影像形态不直接相关的病情分析效果不佳。

不过,作为医生的助手,AI的精准检测可以有效减少漏诊情况,帮助医生快速定位相关病灶。自动生成的影像分析等数据资料也可以为医生提供良好的参考,大大提升他们的工作效率。这一点,在各医院影像检查数量均大幅增长的现在,显得尤为重要。

除此之外,放射科医生其实还扮演着AI的人生导师角色。深度学习算法需要大量的标注数据,这需要放射科医生的鼎力支持。比如在肺结节筛查任务中,医生需要预先标注成百上千张CT影像里的肺结节的具体位置、类型。借助这些训练数据,算法才能最终找到这些结节的隐含特征,实现准确的检测、分析。

目前看来,这场AI+医疗影像的变革,更多地是从普通马到汗血宝马式的渐进性进化,而非从马匹到汽车的时代革命。

与其担忧被取代下岗,放射科医生更应理性看待AI热潮,摒除“人工智能”这一名字的神秘光环,理解AI的长处与不足,让它成为工作的重要助力。


关键字:AI  放射科医生 引用地址:AI,会让放射科医生下岗吗?

上一篇:ECR2019:器械+AI大势已定!GPS、三星、日立等巨头创新几何?国内企业潮向何方?
下一篇:想完成中高端眼科器械的进口替代,图湃影像自主研发扫频OCT视网膜诊断系统

推荐阅读最新更新时间:2024-03-16 12:16

大循环时代,CITE 2020将引领重点领域先行
当今世界正经历百年未有之大变局,当前保护主义上升,世界经济低迷、全球市场萎缩的外部环境下,“双循环”“内循环”成为应对之策。习近平总书记多次强调,“我们要逐步形成以国内大循环为主体、国内国际双循环相互促进的新发展格局。” 对于电子信息产业而言,充分挖掘国内市场潜力,加快关键核心技术攻关,带动国内大循环,为经济发展增添动力成为当务之急。 CITE2020 积极响应国家经济战略调整,瞄准国内市场,集合电子信息全产业链,聚焦 5G 和物联网、智慧家庭、人工智能、智能网联与新能源汽车、智能制造与机器人、大数据与存储、集成电路等产业热点,以“创新共享,开放合作”为主题,于 2020 年 8 月 14 日—16 日在深圳会展中心召开,带动内
[嵌入式]
大循环时代,CITE 2020将引领重点领域先行
IMDT推出配备最新RENESAS RZ/V2H SOC的新型SOM和SBC
IMDT推出配备最新RENESAS RZ/V2H SOC的新型SOM和SBC,为具有视觉AI和实时控制功能的高性能机器人应用服务 基于V2H的SOM(系统模块)和SBC(单板电脑)拥有Quad Cortex®-A55(1.8GHz)CPU和集成AI加速器DRP-AI3,为一系列AI驱动型视觉应用进行了优化。 Renesas RZ/V2H, IMDT SBC 全球领先的尖端视觉和AI驱动型产品和系统供应商IMDT今天宣布,公司新推出了一系列基于新型RenesasRZ/V2H微处理器的高功效、高性价比的即用型系统模块(SOM)和单板电脑(SBC)解决方案。 基于Renesas V2H的IMDT产品系列为机器人、物联
[工业控制]
IMDT推出配备最新RENESAS RZ/V2H SOC的新型SOM和SBC
无人便利店投放上海街头,优缺点都很明显
随着 人工智能 技术越来越成熟,无人便利店悄无声息地进入人们的视野。一家名为缤果盒子的24小时无人便利店最近出现在上海的街头。这是一项测试市民素质的行为艺术,还是未来零售的趋势?记者一探究竟。在烈日下来回找了半天,记者终于发现了这家隐蔽在上海大润发超市总部楼前的无人便利店。 盒子的门是上了锁的,进门时需要打开微信关注缤果盒子,进行手机短信验证码验证后,就可以进入。进入盒子后,相比外面烈日炎炎的高温,里面舒服多了。记者发现,已经有两名顾客在里面纳凉。原来,他们也是特地过来体验的。记者拿了一瓶乳酸菌饮料,然后把它放在收银台上的商品识别区内,显示器显示出商品的价格,然后根据提示用微信付款即可,整个过程较为流畅。顾客也可以通过这家公司的
[嵌入式]
AMD、英特尔、Meta、IBM 等单位发起 AI 联盟,推动开放式 AI 发展
为了应对包括微软、OpenAI、谷歌等科技巨头在人工智能领域的快速发展,Meta 和 IBM 联合一批跨行业、初创企业、学术界、研究机构和政府组织成立了人工智能联盟,旨在推动开放人工智能的发展。 据介绍,AI 联盟将致力于打造和支持跨软件、模型和工具的开放技术,倡导开发人员和科学家采用开放技术,并与组织和社会领导者、政策和监管机构以及公众合作,推动开放人工智能的创新。该联盟还计划建立一个治理委员会和技术监督委员会,以制定整体项目标准和指南。 经查询发现,AI 联盟的 50 家创始成员和合作者包括: 科学、技术和研究机构(A*STAR) Aitomatic AMD Anyscale Cerebras 欧洲核子研究中心
[物联网]
地平线发布全球首款嵌入式AI芯片——旭日和征程
12月20日,地平线在北京召开主题为“AI芯·时代”的发布会,正式发布两款计算机视觉嵌入式AI芯片——旭日和征程,分别面向智能驾驶和智能摄像头。   地平线创始人&CEO余凯表示,从15年成立至今,两年的时间,中国首款嵌入式人工智能芯片终于诞生。相较于其他芯片,旭日和征程在性能、功耗、面积等方面都有了较大的提升,不仅可同时识别200个对象,芯片乘法器利用率峰值更高达100%,可强耦合于各种应用场景。   中国“芯时代”,要从算法和软件出发,重新定义和设计硬件 2017年已正式走进尾声,纵观整个2017年硬科技行业,六个字总结:VR冷了,AI火了。但相较于去年突然爆发的VR概念,AI显然火的更为扎实,商业落地也更实际
[嵌入式]
英国大学用AI和V2V技术开展多车避碰项目 避免高速公路连环车祸
(图片来源:克兰菲尔德大学) 据外媒报道,英国克兰菲尔德大学(Cranfield University)的研究人员参与了一个开拓性项目,旨在研发一种技术,从根本上减少高速公路上多车相撞的事故数量。该项目名为“多车避碰”(Multi-Car Collision Avoidance , MuCCA ),采用人工智能技术(AI)和车到车(V2V)通信技术指导自动驾驶汽车协同决策,以避免发生潜在事故。 MuCCA项目中的车辆成功在测试轨道上复制了真实英国高速公路上的场景,当车辆配备的技术探测到事故时,车辆能够通过无线电连接共享信息,而车载计算机能够算出最佳行车策略,以避开障碍物,然后安全地将车辆引导至商定好的路线,以避免发生事
[汽车电子]
英国大学用<font color='red'>AI</font>和V2V技术开展多车避碰项目 避免高速公路连环车祸
全球AI人才数量“热图”分析:中国全球第7 欧洲是人才聚集地
AI专家的需求在过去几年呈指数增长。随着公司越来越多地采用人工智能解决方案为他们的企业提供服务,对经验丰富、受过博士学位和技术娴熟的人才的需求不会很快出现停滞的迹象。 Element AI的最新报告总结了对全球AI人才库的分布和流动的研究。需要指出的是,尽管这些数据全面呈现了2018年初全球人才的分布情况,但这一分析模型主要以西方为中心,并且主要注重“稀缺性”AI人才的分布。 在中国地区,目前“30万活跃研究人员和从业人员中的20万”已经受雇于该行业。而大约10万人正在学术界进行研究或学习。但这当中包括了整个技术团队,而不仅仅是专门训练有素的专家。 在AI技术人才的范畴中,这份关于人才库的观点仍主要针对西方。对中、美、德、日等主
[机器人]
科创板宣布开板,三家企业提交了上市注册申请
在科创板宣布开板的当天,诞生了第三批过会企业。科创板上市委第3次审议会议召开,澜起科技、天宜上佳、杭可科技3家企业的首发上市申请全部获得上市委审议通过。此前6月5日、6月11日的2次审议会议已经产生了6家过会企业,首批过会的3家企业于6月11日提交了上市注册申请。 第三批过会的3家企业分别来自上海、北京、浙江。从行业来看,澜起科技属于计算机、通信和其他电子设备制造业,天宜上佳属于铁路、船舶、航空航天和其他运输设备制造业,杭可科技属于专用设备制造业,均为目前科创板受理企业分布较为集中的行业。 从受理时间来看,三家企业均为4月获得受理,均经历了三轮问询。 澜起科技的主营业务是为云计算和人工智能领域提供以芯片为基础的解决方案
[嵌入式]
科创板宣布开板,三家企业提交了上市注册申请
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
最新医疗电子文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved