解析无线监护远程医疗系统的设计原理

发布者:Amybaby最新更新时间:2016-10-19 来源: 21ic电子网关键字:医疗监护  单片机  LabVIEW 手机看文章 扫描二维码
随时随地手机看文章

   介绍了一种基于GPRS技术的无线远程医疗监护系统。以SPCE061A为主控芯片,将数据采集模块和GPRS通信模块相结合,以无线的方式连接到Internet,由监护中心接收数据并保存到数据库中。运用LabVIEW工具进行监控中心服务器端主面板的设计与处理,实现对患者生理参数的远程监测、分析及异常情况的判断和报警。阐述了系统的总体结构,从硬件和软件两个方面说明了系统的设计及实现方法。系统具有结构简单、实时性强、传输数据量大,在自然灾害和战争中伤病员的现场抢救等方面,具有良好的应用前景。

  远程医疗监护是利用远程通信技术和计算机技术实现远距离的疾病诊断、疾病治疗和健康护理等多种医学功能的一种医疗模式。它实时、连续、长时间地监测病人重要的生命体征参数,使得医护人员获悉病人状态,以便做出正确的判断和处理,在患有突发性和危险性疾病病人的监护、战争及自然灾害中伤病员的抢救等领域均具有重要的作用。目前,远程监护主要基于电话网、Internet及无线通信网络,因移动通信网络覆盖广、运行费用低,将无线通信技术与Internet技术相结合已成为无线远程医疗监护研究的热点。为了实现低成本、小型化和移动灵活的特点,系统设计以SPCE061A为主控芯片,将采集模块和GPRS(General Packet Radio Service)通信模块相结合,实现生理参数的无线传输。数据通过无线网络传到设在中心医院的监护中心,利用中心医院先进的医疗技术和专家队伍,保证病人在院内和院外得到及时地、有效地、专业地救治。

  1 监护系统的总体结构

  系统设计由智能监护终端、GPRS通信模块(GPRS网络)、Internet公共网络、数据服务器、医院局域网及医院监护中心等部分组成,其框图如图1所示。其中,监护中心服务器端随时处于监听状态,实时响应用户发出的连接请求与读取请求,与之建立连接。智能监护终端可应用到家庭、急救车、救灾或战争急救现场,对病人的生理参数进行采集、处理、显示并作远距离传输。在救护车、救灾或战争急救现场监护终端利用GPRS模块以无线的方式连接到Inteenet;社区及附属医院通过独立上网或者以无线的方式连接到Internet;在中心医院内由医院的局域网将数据传输到监护中心,监护中心专家对数据进行统计观察及时地为病人诊断和提供救治指导,实现远程医疗。

  解析无线监护远程医疗系统的设计原理

  2 监护终端的硬件设计

  监护终端以心电采集模块为核心,扩展血压测量OEM模块、血氧饱和度OEM模块、大容量FLASH存储器和无线传输GPRS模块等外围设备。其中,心电采集模块以16位SPCE061A单片机为控制芯片,扩展前置放大电路、滤波电路、工频陷波电路及心电导联等部分。SPCE061A是一款台湾凌阳公司推出的具有语音处理μ’nspTM结构的微控制器,采用Soc构架,芯片带有硬件乘法器,能够实现乘法、内积等复杂运算。CPU时钟为0.32~49.152 MHz(2.4~3.6 V);内置2K字SRAM和32 K字FLASH;32位可编程的多功能I/O端口;14个中断源;两个16位定时/计数器;可编程音频处理;7通道10位电压模/数转换器;双通道10位DAC方式的音频输入功能,只需外接功放即完成语音播放,方便实现系统的语音功能。

  监护终端完成生理信号的采集和处理一方面在现场显示,另一方面发送给GPRS模块,利用单片机控制GPRS模块的启动、连接、模式转换等,并在资料模式下将经过加密和容错处理后的数据实时发送到监护中心服务器,实现系统功能。硬件结构如图2所示。

  解析无线监护远程医疗系统的设计原理

   2.1 心电采集和调理模块

  心电信号是一种低频率的微弱双极性信号,带宽集中在0.05~100 Hz,幅度只有mV量级,快速检测并提取清晰的心电信号是进行监护和分析诊断的基础。实际采集到的心电信号常混有直流和高频干扰及人体运动、呼吸引起的基线漂移和肌电干扰,系统设计利用心电导联线获取心电信号,经AD623差分放大器完成前置放大,经后续的多级放大、滤波电路和陷波电路完成信号的调理,再送入单片机的电压模/数转换器完成心电信号的数字化。在采集端设有导联脱落检测语音报警电路,避免因患者移动造成导联脱落。心电信号的采集调理电路结构如图3所示。

  解析无线监护远程医疗系统的设计原理

  由于心电信号是高内阻的微弱信号源,源阻抗不稳定,受周围电磁干扰(50 Hz工频信号)大。因此,前置放大器要求具有高增益且可调节、高输入阻抗和高共模抑制比,以消除工频及电极化电压的干扰;输入失调电压和偏置电流小、温漂小、以保证信号的稳定性。系统设计采用ADI公司的仪表放大器AD623作为心电信号前置放大器的核心器件,其内设过压保护和高精度偏置与反馈电阻,输入失调电压漂移1μV/ ℃,输入偏置电流最大25 nA,CMRR抑制频率高达200 Hz,只需在1和8引脚间接入合适电阻Rg,就可以得到1~1 000dB之间的增益。考虑到极化电压的影响,增益不能太高,这一级的增益设定为10,否则会导致放大器饱和。电路如图4所示。

  解析无线监护远程医疗系统的设计原理

 

  为了使信号能满足A/D转换要求,须将信号放大至数伏量级,设置次级放大的增益为100倍左右,设计采用具有宽增益、低失调电压和漂移的运算放大器OP2335。为了消除高频干扰、低频干扰和50 Hz的工频干扰,在次级放大电路的前端采用二阶有源带通滤波器滤除0.03 Hz以下和100 Hz以上的低高频噪声。同时,采用经典的双T有源陷波电路滤除50 Hz工频干扰。限于篇幅,具体电路就不一一介绍。

   2.2 血压与血氧模块

  血压模块与血氧模块分别采用北京迈创通元电子仪器有限公司的BTN602无创血压测量模块和BTN604血氧模块。BTN602模块可以测到收缩压、平均压、舒张压和脉压,其接收外部命令后,完成相应操作,返回系统状态和相应数据。BTN604模块单电源3.3 V供电,可以检测到动脉血氧饱和度、脉率、体积扫描图、棒图、信号强度和状态信息,它的通讯协议和BCI通讯协议兼容、数据传送波特率为4 800 bps,传送格式为:8位数据位+奇偶校验位+1个停止位,每秒向MCU发送60个数据包,每个数据包为5个字节。由于两个模块均采用串口协议与MCU通信,信号电平为TTL电平,可以直接与心电模块单片机SPCE061A相连,利用单片机普通I/O口模拟串口协议分别与两模块通信。

  2.3 GPRS传输通信模块

  智能监护终端心电、血压及血氧模块采集的数据经单片机处理后,以数据流形式通过串行方式连接到GPRS通讯模块SIM300上,SIM300模块以TCP/IP数据包的形式通过GPRS网络与中国移动的内部网,由中国移动GPRS服务节点(GSN),把数据发送到Internet上一个指定的IP地址服务器即系统监控中心服务器,监控中心专家通过Internet访问Web服务器,就可以浏览到监护病人的各种生理参数信息。

  SIM300是Simcom公司研制的GSM/GPRS通信产品,内嵌强大的TCP/IP协议栈,实现语音、SMS、数据和传真信息的高速传输。SIM300模块上电后就会自动附着在GPRS网络上,通过按键对SIM300的PowerKEY引脚输入一个大于1 500 ms的低脉冲,开启SIM300模块。模块开启后,设计采用SPCE061A作为微处理器发送AT命令,完成对SIM300模块的控制和数据的收发。应用电路如图5所示。

  解析无线监护远程医疗系统的设计原理

  2.4 显示与存储模块

  系统设计选用MSP-G320240DBCW-211N大规模点阵式液晶显示模块,实现各监护参数和波形的显示。该液晶显示模块采用功能强大的SED 1335FOA控制器,具有较强的I/O口缓冲器和丰富的指令系统,最大驱动能力达640x256点阵,能够实现图形和文本的混合显示。由于SPCE061 A片内的Flash存储器只有32K字,不能满足长时间测量的需要,系统扩展了一片4Mb总线闪存器SPR4096。硬件连接如图5所示。

  3 监护系统软件设计

  系统软件设计主要包括监护终端的软件设计和监护中心监控软件的开发。监护终端软件由C语言编写,主要实现各采集模块的数据采集、显示和存储以及串行口数据的接收和发送。由单片机心电采集程序、单片机与血压及血氧模块的软串口程序、基于GPRS模块的通信程序、数据存储与显示程序、语音报警程序组成。为了实时有效地完成多参数的采集,充分利用了多种中断方式来完成系统功能,包括定时中断、串口中断、键盘输入中断等。

  监护中心监控软件部分主要由数据通讯模块、数据处理显示模块、诊断报警模块、医学数据库模块等组成,通过LabVIEW平台建立Web服务器,方便医院局域网里的专家对监测数据进行调用和处理,应用软件开发框图如图6所示。

  解析无线监护远程医疗系统的设计原理

  客户端界面是提供给医生和患者使用的软件界面,利用密码进行登录,不同的用户给予不同的权限。医生用户可以查看到他所管理的所有病人的信息、生理参数测量值和波形图;患者用户则只能看到测量信息和医生的建议。数据通讯模块随时处于监听状态,响应智能终端的连接请求,接收终端传输的加密数据,并存入相应的缓冲区。数据处理显示模块依靠LabVIEW提供的各种分析函数和显示控件将接收到的生理参数及处理的结果显示在计算机的屏幕上,使医护人员能够实时了解病人的生理状况。当生理信号出现异常时,诊断报警模块将发出报警信息,提示医护人员。数据库模块记录了医生信息、病人信息及各测量参数,方便查询和诊断,为建立病人病历、分析长期生理检测结果提供保障。

  4 结束语

 

  基于GPRS技术和Internet技术的无线远程医疗监护系统,经多次测试基本实现了生理信号的采集、数据处理、存储、显示和传输功能。系统结构简单、功耗低、成本低,可实时、连续、长时间地监测病人心电、血压、脉搏、血氧等生理参数。GPRS技术和Internet技术的应用实现了将中心医院的先进医疗技术、医疗服务扩展到家庭、社区、救灾或战争急救,形成一种全新的基于网络的医疗体系。同时,有助于缓解我国社区及广大农村地区医疗力量薄弱,医疗资源分布不均的矛盾,实现医疗资源的共享。


关键字:医疗监护  单片机  LabVIEW 引用地址:解析无线监护远程医疗系统的设计原理

上一篇:微软最新可穿戴医疗设备非光学心率监测专利曝光
下一篇:汗液感知或将成为下一个智能健康穿戴热点,美国空军投了400万美元

推荐阅读最新更新时间:2024-03-16 12:05

51单片机定时器模式2与波特率的应用
这里我们主要说的是波特率和定时器2的应用。 一般来说,我们串口通讯用到的都是异步串行通讯,工作的方式为方式1. 方式1即为发送一个完整的信号为10个bit.起始信号为低电平,终止信号为高电平,串口通讯的两根线在平常时候都是处于高电平状态,当一旦有数据要进行转发的时候,电平拉低,通讯芯片马上对信号进行监听。这样子就能正常收发数据了。 一般来说,我们都是采用定时器1的模式2(自动重装模式)来作为波特率发生器的,同理,定时器1的中断也就被我们遗弃了,因为为了波特率产生的时候不会受到干扰(如果定时器1有中断函数,那么处理中断函数会关闭定时器1中断,这时候波特率发生器就处于关闭状态了)。根据STC给我们的文档,定时器1所具有的功
[单片机]
51<font color='red'>单片机</font>定时器模式2与波特率的应用
单片机应用产品设计经验---抗干扰篇1
如何提高电子产品的 抗干扰能力和电磁兼容性 在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性? 1、 下面的一些系统要特别注意抗电磁干扰: (1) 微控制器时钟频率特别高,总线周期特别快的系统。 (2) 系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3) 含微弱模拟信号电路以及高精度A/D变换电路的系统。 2、 为增加系统的抗电磁干扰能力采取如下措施: (1) 选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源
[单片机]
单片机 认识HEX文件
看过几篇常用指令的用法后,我们换换口味,介绍一下Intel 原厂所公布的HEX文件标准格式,相信经过本文的介绍,一定可以让您对8051的操作有更进一步的认识。以下是一个程序经编译器编译后所得到的HEX文件内容: //Example.hex 行号 原始码 1 :10000000020003787FE4F6D8FD75812B02004A02D6 2 :10001000008FE493A3F8E493A34003F68001F20871 3 :10002000DFF48029E493A3F85407240CC8C333C435 4 :10003000540F4420C8834004F456800146F6DFE4A0 5 :1
[单片机]
单片机外围模块漫谈之一,图解说明什么是Flash, SAR, Sigma-Delta型ADC
模数转换模块ADC是连接现实世界模拟量和数字量之间的桥梁,它的转换精度经常可以决定一个产品的品质。现在单片机上一般都会集成ADC,我们如何根据自己的应用选择恰当的产品呢?怎么实现高的性价比,让产品在激烈的市场竞争中立于不败之地呢?下面我们从常用的几种ADC类型的特点,到使用中的注意事项,逐一探讨一下。 ADC类型 常用的ADC基本上可以分为三种类型: Flash型,SAR型,Sigma-Delta型。下面我们来了解一下它们的工作原理与性能特点。单片机中最常采用的是SAR型,在一些高精度场合会用到Sigma-Delta型,而Flash型很少会集成在MCU内部,如果需要一般需要通过串行或并行总线外扩。 Flash型
[单片机]
LabVIEW程序设计模式(五)—生产者/消费者模式(1)_前言
再次回顾 基本状态机模式 的6个缺点,只剩下第6个缺点无法在上述的 状态机和事件结构的结合模式 中被解决。 任何时刻只能有一个状态在运行 这个问题也许有些多余,但是在实际的应用中往往又是最常见的。大多数比较复杂的应用至少应该有 菜单 和 采集 两个状态,如果数据采集程序在运行时仍然希望系统能够处理菜单的事件,这是在传统的状态机或者事件结构中无法实现的。因为无论是状态机结构还是事件结构,都是由一个循环组成的,不同的状态是无法同时被响应和处理的。 解决这个问题的方式也比较简单,LabVIEW本身就是一种多线程的程序设计语言,可以再加一个循环或者另外开一个程序独立运行。但是这样也会带来一些新的问题,比如: 两个循环(程序)之间如
[测试测量]
51单片机 数码动态显示
#include #include #define uchar unsigned char #define uint unsigned int #define SEG P0 sbit latch1=P2^7; //段驱动锁存信号 sbit latch2=P2^6; //位驱动锁存信号 uchar code DSY_CODE = { 0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f }; void DelayMS(uint x) { uchar t; while(x--) { for(t=12
[单片机]
labview递归调用方法
递归调用的步骤为: 1.在前面板放置输入输出控件 2.编辑VI图标 3.指定VI连线板的输入输出 4.将VI属性的执行类别中选中可重入执行、在实例间共享副本 5.将VI图标拖放到程序框图中进行程序编写 以下面为例显示程序 利用递归调用,实现平方和计算公式:F(n) = n2+(n-1)2+ 22+12
[测试测量]
什么是51单片机?又该如何自学51单片机
51 单片机是目前使用最多的单片机之一,那么什么是 51 单片机呢?作为新手,又该如何自学 51 单片机?为帮助大家更好的学习 51 单片机,本文将对这两个问题予以阐述。如果你对 51 单片机具有兴趣,不妨继续往下阅读哦。 一、何为 51 单片机 51 单片机是对所有兼容 Intel8031 指令系统的单片机的统称。该系列单片机的始祖是 Intel 的 8004 单片机,后来随着 Flashrom 技术的发展,8004 单片机取得了长足的进展,成为应用最广泛的 8 位单片机之一,其代表型号是 ATMEL 公司的 AT89 系列,它广泛应用于工业测控系统之中。很多公司都有 51 系列的兼容机型推出,今后很长的一段时间内将占有大量
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved