有源电力滤波器中锁相倍频电路的实现

最新更新时间:2009-12-02来源: 中国传动网 关键字:有源电力滤波器  锁相倍频电路  过零检测 手机看文章 扫描二维码
随时随地手机看文章

      有源电力滤波器(Active Power Filter, APF)是一种动态抑制谐波和补偿无功的电力电子装置。锁相倍频电路是有源电力滤波器谐波检测模块的重要组成部分,它的稳定性对有源电力滤波器快速响应起到了关键的作用。供电系统的信号频率随负载的变化在较大的范围内变化,为实现准确的信号采样,DSP必须准确的知道当前信号的频率,确保采样频率与信号频率保持一致。锁相倍频电路就是将一个完整的周期等分成N份,作为DSP的采样信号。

1 锁相倍频电路的原理

  锁相倍频电路能否实时稳定的输出12.8kHz的方波,是整个检测模块在开机后能否在最短时间内开始工作的关键。图1所示为锁相倍频电路的原理框图。


图1 锁相倍频电路的原理框图

  由图1可以看出,锁相倍频电路是一个闭环频率反馈系统,它主要由鉴相器、低通滤波器、压控振荡器和累加计数器构成。

  鉴相器是使输出电压与两个输入信号之间的相位差有确定关系的电路,它是锁相环PLL(Phase Locked Loop)的基本部件之一,鉴相器可以分为模拟鉴相器和数字鉴相器两种。

  鉴相器的输出信号包含很多的谐波分量,当锁相环处于锁定状态时,这些分量的第一项为“直流”分量,其它频率的分量为不需要的信号,而且在锁相倍频电路的信号传递中,也会有高频噪声对信号产生干扰,这些较高频率的分量也是不需要的信号,所以要用低通滤波器将其滤除。在此设计中,采用一阶低通滤波器。

  压控振荡器是输出频率与输入电压有对应关系的振荡电路VCO(Voltage-controlled Oscillator),在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。

  在APF的检测系统中,锁相倍频电路的输出作为启动AD采样的信号,分频器将VCO产生的输出信号频率除以N,这个因子多数情况下可变或可编程控制,分频器通常由触发器(如RS触发器、JK触发器或是T触发器)级联而成,一个JK触发器可以将加到它的时钟输入端信号2分频,两个就是4分频等。

  在此电路中,使用了二进制加法计数器CD4040,即其累加数均为2的倍数,如要得到256倍,即把输出信号从其Q8脚输出。

2 锁相倍频电路的设计

  2.1 过零检测电路

  过零检测电路原理图如图2所示。电路中采用宇波CHV-25P霍尔电压传感器,此霍尔电压传感器的额定电流为10mA,原边与副边匝数比为2500:1000,所以在将A相电网电压接入霍尔电压传感器前,需要通过一个限流电阻进行限流,以免电流过大将霍尔电压传感器烧坏,它的M端为副边电流输出端,需要加一支采样电阻,将电阻上的压降引入一个由运算放大器CA3140及四个电阻组成的滞回比较器,然后在其输出端通过一个由两个二极管组成的钳位电路之后,将高低电平锁定为5V和0V,然后再进入一个与非门CD4093,对输出信号进行整形,将信号变成高电平为5V,低电平为0V的标准的方波,然后此方波会作为锁相倍频电路的输入信号。


图2 过零检测电路原理图
2.2 锁相倍频电路

  此锁相倍频电路采用了一片锁相环芯片74HC4046、一片累加计数器CD4040和低通滤波器,其电路连接图如图3所示。


图3 锁相倍频电路原理图

  A相电压经过零信号检测电路后得到与A相电压同步的50Hz方波,作为锁相倍频电路的输入信号进入锁相环芯片74HC4046的14号引脚,4号引脚是74HC4046内部压控振荡器的输出端,其输出信号输入CD4040的10号引脚,进行256倍的倍频,其倍频信号从二进制计数器CD4040的13号引脚输出又进入74HC4046的3号引脚,即比较信号输入端,74HC4046内部的相位比较器对两个信号进行相位比较后,从相位比较器Ⅱ的输出端13号引脚输入,经过由 、 和 组成的低通滤波器,将高频噪声滤除后,再进入74HC4046的内部压控振荡器,作为其控制信号,从上述过程可以看到这是一个闭环控制系统,经过不断的调节,使输出信号频率为输入信号频率的256倍,并且使输入信号与比较信号的频差为零。

3 实验结果及分析

  过零检测电路在外加信号频率为50Hz正弦波时的实验波形图如图4所示。


图4 过零信号与正弦波形

  图5所示为所设计的锁相倍频电路的输出实验波形。


图5 锁相倍频电路输出的12.82kHz方波

  压控振荡器的输入电压来自于低通滤波器的输出,所以输出频率会有一定的波动,此锁相倍频电路的输出频率范围在12.77kHz-12.82kHz。锁相倍频电路输出的频率在被DSP捕捉到后就会启动AD7656对信号采样,由于输出频率的脉动,采样点的正弦和余弦值可能会与表中存储的正弦和余弦表有一定误差。在满足锁相速度的前提下,应当尽可能减小低通滤波器的截止频率,以减小输出频率的波动。

关键字:有源电力滤波器  锁相倍频电路  过零检测 编辑:金海 引用地址:有源电力滤波器中锁相倍频电路的实现

上一篇:模拟IC领域会不会出现领袖企业?
下一篇:中国LED研发与产业发展战略决策思考

推荐阅读最新更新时间:2023-10-12 20:16

消除有源电力滤波器系统振荡的控制方法仿真分析
1  引言     有源电力滤波器(APF)是一种动态抑制谐波电流、补偿无功的新型装置,具有响应速度快、补偿效果好,能实现动态连续实时补偿等优点。其基本原理在于向电网中注入一个与谐波电流、无功电流大小相等、方向相反的补偿电流,从而达到消除谐波,使电网侧电流成为正弦且电网功率因数为1的目的。因此,采用有效的控制方式,精确地产生补偿电流是决定滤波效果的重要因素。在各种类型的电力有源滤波器中,并联型电力滤波器应用最为广泛。本文对传统的并联有源电力滤波器控制方式进行改进,增加局部反馈环节用于解决系统中无源滤波器引起的振荡问题。仿真结果说明该方法能同时改善电网侧电流和公共连接点电压的波形,降低畸变率。 2  主电路及其传统控制方式
[嵌入式]
并联有源电力滤波器交流侧滤波电感的优化设计
    0 引言   并联有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,近年来,有源电力滤波器的理论研究和应用均取得了较大的成功。对其主电路(VSI)参数的设计也进行了许多探讨,但是,目前交流侧滤波电感还没有十分有效的设计方法,然而该电感对有源滤波器的补偿性能十分关键。本文通过分析有源电力滤波器的交流侧滤波电感对电流补偿性能的影响,在满足一定效率的条件下,探讨了该电感的优化设计方法,仿真和实验初步表明该方法是有效的。    1 三相四线并联型有源电力滤波器的结构与工作原理   图1为三相四线制并联型有源电力滤波器的结构。主电路采用电容中点式的电压型逆变器。电流跟踪控制方式采用滞环控制。
[电源管理]
并联<font color='red'>有源电力</font><font color='red'>滤波器</font>交流侧滤波电感的优化设计
不同形式有源电力滤波器与负载之间的连接原理
不同形式有源电力滤波器与负载之间的连接原理图 (a)串联型有源电力滤波器(b)并联型有源电力滤波器 (c)串联混合型有源电力滤波器(d)并联混合型有源电力滤波器 (e)统一电能质量调节器(f)直流输电用有源电力滤波器 图 不同形式有源电力滤波器与负载之间的连接原理图
[电源管理]
不同形式<font color='red'>有源电力</font><font color='red'>滤波器</font>与负载之间的连接原理
混合型有源电力滤波器设计及其工程应用
    1 引言     近年来,随着电力电子设备的发展。谐波污染日趋严重,而用户对电能质量的要求却越来越高。HAPF作为治理谐波的主要技术之一,因其性价比高且工程实现容易,正日益成为工业系统有效滤除谐波和无功补偿的首选方案。此处介绍了HAPF的主电路系统结构和设计及其数字控制系统的构成和DSP实现。最后,针对某企业谐波和无功情况,给出了HAPF的具体实现方法。现场运行数据表明,提出的设计思路和方案可行。     2 HAPF的主电路结构及原理     图1示出HAPF系统拓扑,因结构简单,安装容易,占地面积小,适用于低压系统兼顾大容量无功补偿和动态谐波治理场合,在工业上应用广泛。     单纯的无源滤波器(PF)存在滤波特
[电源管理]
混合型<font color='red'>有源电力</font><font color='red'>滤波器</font>设计及其工程应用
基于DSP并联有源电力滤波器的研究
      随着电力电子技术的迅猛发展,电力系统中非线性负荷大量增加,各种非线性和时变性电子装置如逆变器、整流器及各种开关电源的应用越来越广泛,由此带来的谐波和无功问题日益严重。采用电力滤波装置就近吸收非线性负载所产生的谐波和无功电流,是抑制谐波和无功污染的有效措施。目前大量采用并聪型无源电力滤波器(PPF)来抑制谐波,PPF具有投资少、效率高、结构简单、运行可靠及维护方便等优点,但是其本身固有的缺陷限制了其发展。与PPF相比,有源电力滤波器(APF)具有高度的可控性和快速响应性,其特点是不仅能够补偿各次谐波,还可以抑制闪变、补偿无功;不受系统阻抗特性的影响,可消除与系统阻抗发生并联谐振的危险;具有自适应能力,可自动跟踪补偿变化着的
[电源管理]
基于DSP并联<font color='red'>有源电力</font><font color='red'>滤波器</font>的研究
在稳定/脉冲电源中直流有源电力滤波器原理及应用
1引言 大功率的低纹波、高精度稳定/脉冲直流电源是一种非常重要的特种电源,在现代科学研究和医疗、工业生产中获得越来越广泛的应用。 高能物理研究中的质子同步加速器,核磁共振装置中的磁体以及超导电工技术研究中的超导磁体都对磁场的长期稳定度提出了严格的要求。要保证磁场的长期稳定,就要保证其励磁电流的长期稳定。在要求稳定电源输出电流稳定的场合,一般同时要求它的输出电流纹波也极低。如某大型粒子加速器的主环电源峰值功率约2500kW,要求的电流长期稳定度为±1×10-4,电流纹波系数为5×10-5。核物理研究中的重粒子加速器系统应用的快速脉冲电源,其电流必须精确地跟随由计算机给出的电流脉冲模式,往往要求电流的上升速度达到每秒数百到
[电源管理]
有源电力滤波器的发展与应用
摘要:介绍有源电力滤波器在国外近年来的一些发展情况,介绍有源电力滤波器目前的主要研究问题、分类及其应用情况。 关键词:谐波有源电力滤波器 Development and Application of APF Abstract: The information about active power filter is introduced in this paper. The main research problems, classify and application of active power filter in overseas are introduced. Keywords: Harmo
[电源管理]
<font color='red'>有源电力</font><font color='red'>滤波器</font>的发展与应用
一种消除有源电力滤波器系统振荡的控制方法
摘要:提出一种增加局部反馈的控制方法,对传统有源电力滤波器控制方式进行了改进。该方法具有能较彻底地消除系统振荡,同时降低电网侧电流和公共连接点电压畸变率的优点。仿真分析结果验证了该方法的有效性。 关键词:有源电力滤波器;谐振;控制方式;高通滤波器   1 引言 有源电力滤波器(APF)是一种动态抑制谐波电流、补偿无功的新型装置,具有响应速度快、补偿效果好,能实现动态连续实时补偿等优点。其基本原理在于向电网中注入一个与谐波电流、无功电流大小相等、方向相反的补偿电流,从而达到消除谐波,使电网侧电流成为正弦且电网功率因数为1的目的。因此,采用有效的控制方式,精确地产生补偿电流是决定滤波效果的重要因素。在各种类
[工业控制]
一种消除<font color='red'>有源电力</font><font color='red'>滤波器</font>系统振荡的控制方法
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved