利用自动归零噪声滤波器降低仪表放大器的输出噪声

最新更新时间:2010-01-28来源: 互联网关键字:自动归零放大器  仪表放大器 手机看文章 扫描二维码
随时随地手机看文章

引言

    仪表放大器通常用于在高共模电压场合放大一个小的差分信号,有些应用要求高精度放 大器具有超低失调和漂移、低增益误差和高共模抑制比(CMRR)。

    本文建议设计人员考虑 使用自动归零放大器来达到上述应用的要求。 自动归零放大器具有低电压失调、漂移,提供较高的增益和共模抑制比。但这类放大器有一个缺点:在自动归零频率及其倍频上存在明显的噪声。自动归零频率位于典型仪表 放大器的有效带宽以外。有些应用中,仪表放大器的输出直接连接到模/数转换器(ADC),这些噪声会直接影响系统的性能。 本应用笔记介绍了一种简单的滤波技术,用来降低自动归零噪声,能够以最少的外围元件配合自动归零仪表放大器实现一个新颖的间接电流反馈架构。

仪表放大器的典型应用

    仪表放大器在医疗系统中最流行的一种应用是心电监护仪(ECG),这种监护仪利用与人体皮肤相接触的传感器监测心率。ECG 传感器成对使用,检测非常弱的差分信号,通常只有几百微伏到几个毫伏,并伴随有较大的失调电压。例如,病人的左、右臂之间的失 调电压可能达到200mV。差分交流信号通过具有高直流共模抑制比的仪表放大器放大, 放大电路还采用了高通滤波器,以消除不同传感器所产生的不同直流成分。

    由于仪表放大器通常放置在整个放大链路的第一级,要求具备高输入阻抗和高CMRR。另外,由于输入差分信号处于亚毫伏级,放大器需要在标准的0.05Hz 至150Hz 带宽内提 供高增益。整个模拟链路的增益通常在1000 倍,因此,第一级仪表放大器的增益最好 在20 至100 范围内。考虑到高增益的需求,必须尽可能降低输入失调电压(VOS),以确 保足够的输出动态范围。

    抑制邻近设备及电力线的50Hz/60Hz 噪声是ECG 设计的基本要求,因此,仪表放大器在 50Hz/60Hz 频率处具有高CMRR 和电源抑制比(PSRR)成为一个影响设计的关键因素。最 后,带有关断功能的低功耗器件也是许多便携式ECG 系统设计的基本需求。

间接电流反馈架构

    作为一种新型仪表放大器,Maxim 拥有专利的间接电流反馈架构*与传统的三运放架构 (图1)相比具有一些重要优势。关于间接电流反馈架构的详细内容,请参考Maxim 网站。



图1. 传统的三运放仪表放大器结构,虚线内的电阻是器件的外部电阻。

    图2 是MAX4209 采用的新型间接电流反馈架构。



图2. MAX4209 间接电流反馈仪表放大器

    图2 中的A 和B 分别是两个跨导放大器,从它们的差分输入电压产生输出电流,并对共模输入信号进行抑制。C 为高增益放大器,通过R1 和R2 提供负反馈。负反馈环路强制放大器A 和B 的两个差分输入端相等。因此,放大器输出和差分输入VIN 的关系如下:

VOUT = VIN × (1 + R2/R1)

其中:VIN = VIN+ VIN

    与传统方案相比,这种间接电流反馈架构有两个重要优点:

    输入共模电源在第一级即被抑制掉,使得仪表放大器可以采用单电源供电并可在整个增益范围内处理零电位或负电位检测。

    放大器增益通过两个内部匹配电阻设置,大大提高了增益精度。

自动归零放大器的基本原理

    为了连续校准放大器的失调电压,自动归零放大器用一个“零”放大器并联在信号路径 上,内部振荡器工作在自动归零频率(fC),典型值为几十kHz。工作过程分为两个阶段,如图3 所示。自动归零阶段:两个开关都置于1,电容(C1)充电到归零放大器(A2)的失 调电压。主放大器(A1)的失调电压(由C2 保持)通过NULL 引脚校准。放大阶段:两个开关都置于位置2;C1 保持归零放大器的失调电压(已经通过NULL 引脚校准);A1 的失调 电压由A2 测量并保存在C2 上。



图3. 自动归零放大器的基本工作原理图

    自动归零放大器组成了一个数据采样系统,由此会产生采样或自动归零频率fC 与信号频率(fS)的和与差。为避免混叠失真,信号带宽限制在fC 的一半以下。

    自动归零技术能够使放大器大大降低输入失调电压 VOS,降至几个微伏,失调电压漂移达到每摄氏度几十分之一微伏。如果fC 比噪声截止频率高很多,1/f 噪声仍然可以被抑 制掉。理论上,自动归零放大器不存在1/f 噪声,但是,斩波操作在较宽频带内增大了 输出白噪声。

降低自动归零频率附近的噪声

    MAX4209 是一个间接电流反馈仪表放大器,由于内置自动归零电路,具有非常高的直流 精度。在有些应用中,MAX4209 的输出直接连接到ADC,滤除其输出噪声可有效改善系统性能。输出噪声是由宽带白噪声和自动归零频率fC 以及其倍频处的毛刺组成。特别是在ADC 的采样频率与自动归零频率fC 之差落在有效频带时,引入这个滤波器更为重 要。本文给出的测试结果采用的是固定增益为100 的MAX4209H,器件的信号带宽为7.5kHz, fC 约为45kHz。由放置在放大器OUT 和FB 引脚间的外置电容(C)和内部电阻(R2)并联构 成一阶低通滤波器,滤波器的极点由C 和R2 决定,MAX4209H 内部的R2 是99kΩ,图4 为噪声测量电路。



图4. MAX4209 噪声测量电路

    图5 和图6 为输入参考噪声曲线,包括三种不同测量:没有外部电容C、C = 1nF 和C = 10nF 的情况。没有电容C 时,-3dB 带宽仅受限于MAX4209H (信号带宽为7.5kHz)。



图5. 无反馈电容、电容等于1nF 和10nF 时,MAX4209H 输入参考噪声密度曲线



图6. 无反馈电容、电容等于1nF 和10nF 时,MAX4209H 输入参考噪声的RMS 值

    设计人员需要根据具体应用在所要求的噪声抑制和信号带宽限制之间进行折衷。下表归纳了没有外接电容、C = 1nF 和C = 10nF 条件下的折衷选择。

有些应用中,如果对噪声抑制有更高要求,可以采用比反馈电容更多的外部滤波元件, 在放大器输出端连接一个简单的RC 低通滤波器可以提供更高的噪声衰减。图7 和图8 给出了用RL = 39Ω、CL = 760nF 作为输出低通滤波器时的输入参考噪声曲线。对应这 些元件值,RC 滤波器的极点在5kHz 附近,在45kHz 自动归零频率fC 处提供大约18dB 的衰减。



图7. 外接RC 输出滤波器和不同反馈电容情况下,MAX4209H 的输入参考噪声密度曲线



图8. 外接RC 输出滤波器和不同反馈电容情况下,MAX4209H 输入参考噪声的RMS 值

结论

    对于高共模电压下放大微弱输入信号的应用,仪表放大器必须保持极低的失调电压、漂 移和极高的增益精度以及高CMRR。自动归零的间接电流反馈放大器能够满足这些性能需 求,但会增大输出噪声。本文通过一个非常简单的方法(即增加一个外置电容或最多3 个外置元件),可有效降低间接电流反馈放大器MAX4209 的噪声。

关键字:自动归零放大器  仪表放大器 编辑:金海 引用地址:利用自动归零噪声滤波器降低仪表放大器的输出噪声

上一篇:使用运算放大器来驱动高精度ADC
下一篇:采用仪表放大器的0V压降分流器

推荐阅读最新更新时间:2023-10-12 20:16

仪表放大器故障检测电路及故障检测方法
即使正常状态下,传感器和放大器间也可能出现故障,该故障可能是由错误应用、所处的使用环境、低品质的组件或其他原因引起的。本文将介绍经常发生的故障类型,并举例说明这些故障是如何导致错误的测量结果。分立式方案可以检测这些故障,但会影响系统的性能。本文将给出仪表放大器的故障检测电路以及各故障的检测方法,另外还会提到一种检测故障的自我测试程序。文中最后还将讨论采用分立式方案检测故障时对系统性能的影响。   使用仪表放大器的传感器可能在传感器与放大器之间发生一系列故障。这些故障可能发生在4个点上,如图1所示的A、B、C、D。A点可能发生的故障是电源和电桥之间开路或者连接状况恶化使电桥和电源之间产生电阻。同样的故障也会发生在电桥和接地之间
[测试测量]
<font color='red'>仪表放大器</font>故障检测电路及故障检测方法
如何利用间接电流模式仪表放大器放大具有大直流偏移的交流信号?
如何利用间接电流模式仪表放大器放大具有大直流偏移的交流信号? 问题: 如何支持存在大差分偏移电压的应用而不需要增加增益级? 答案: 这可以通过在一级中利用微功耗轨到轨间接电流模式仪表放大器设计一个交流耦合和增益解决方案来实现。本文将概述这种设计的优势,并提供分步设计指南。 简介 在电磁流量计和生物电测量等应用中,小差分信号与大得多的差分偏移串联。这些偏移通常会限制电路在前端设计中可以获得的增益,进而影响整体动态范围。当使用较低电源电压时,例如在电池供电的信号链中,增益限制更具挑战性。解决这个大差分偏移问题的一种方案是使用交流耦合测量信号链。典型的交流耦合信号链包括一个低增益仪表放大器,其后是一个高
[模拟电子]
如何利用间接电流模式<font color='red'>仪表放大器</font>放大具有大直流偏移的交流信号?
ADI推出高功效、零漂移仪表放大器AD8237
Analog Devices, Inc.最近推出微功耗、零漂移精确度仪表放大器AD8237,以具有竞争力的价格为精密信号及传感器调理提供一个高功效解决方案。AD8237具有低输入失调漂移 ( 0.3µV/ºC)和业界领先的输入信号范围,比供电轨高出300 mV。该器件的最大增益误差和漂移分别为0.005%和0.5 ppm/°C,CMRR(共模抑制比)为114 dB,即便在低增益的情况下也能提供无可比拟的精确测量。放大器的静态电源电流仅略高于100 µA,非常适合桥式信号调理、温度传感器以及其它在低功耗设计中使用的类似传感器。AD8237的目标应用包括便携式及电池供电的医疗保健、消费电子及精密仪表设备,如输液泵、移动血压监测仪、4至
[模拟电子]
仪表放大器:三运放INA的基础操作简介
许多工业和医疗应用在存在大共模电压和DC电位的情况下,都使用仪表放大器(INA)来调理小信号。三运算放大器(三运放)INA架构可执行该功能,其中输入级提供高输入阻抗,输出级过滤共模电压并提供差分电压。高阻抗与高共模抑制比的结合是流量传感器、温度传感器、称重装置、心电图(ECG)和血糖仪等众多传感器和生物计量应用的关键。 本文介绍了三运放INA的基础操作,分析了零漂移放大器的优点、RFI输入滤波器、监测传感器健康和可编程增益放大器,并列举了传感器健康监测器和有源屏蔽驱动(acTIve shield guard drive)电路的应用范例。 三运放INA基础操作 INA本身的性质使其适用于调理小信号。其高阻抗与高共模抑制比
[模拟电子]
血压计中仪表放大器的设计与制作
为了检测血压测量系统中的微弱信号,采用由分立元件构成仪表放大器作为压力传感器前置放大器。运用Multsim对仪表放大器进行设计仿真,并对硬件电路安装调试。当输入信号带宽控制在10 Hz~2 kHz内,调节电位器RP可以使仪表放大器的增益可达90 dB。测试表明仪表放大器指标符合血压测量系统要求。 关键词:血压计;仪表放大器;Multsim仿真;电路安装 仪表放大器是精密差动电压放大器,其源于运算放大器,但优于运算放大器,具有低噪声、高输入阻抗、低线性误差、高共模抑制比、低失调漂移增益设置灵活和使用方便等特点,使其在传感器信号放大、数据采集、精密电子仪器设备、医疗仪器等方面广泛被采用。采用分立元件构成的仪表放大器作为血压计中压力
[模拟电子]
血压计中<font color='red'>仪表放大器</font>的设计与制作
基于零漂移仪表放大器的传感器电路优化方案
   传感器 测量 通常是将感兴趣的物理现象转换为电子电路参数,如电阻和电容,然后再用桥电路进行读取。桥电路再产生与温度和 电源 电压成比例关系的输出电压或电流信号,从而使测量系统免受温度和电源电压等因素变化的影响。传感器例子包括:用于温度检测的热敏电阻、用于压力检测的电阻/电容应变仪、 用于方向/位置检测的磁阻传感器。   直接可以产生信号电压或电流的传感器不需要用桥电路来转换物理参数。这种传感器例子有热电偶、基于ECG的医疗仪器以及电源监测电路中测量电压的电流检测电阻等。   目前的传感器应用范围广,从消费类电子(温度计、压力计、 GPS 系统等)到 汽车电子 (燃油传感器、爆震传感器、刹车线路传感
[安防电子]
基于零漂移<font color='red'>仪表放大器</font>的传感器电路优化方案
主流仪表放大器芯片学习详解(1):AD620 三
  图8 高精度电压至电流转换器1.8 mA, ±3 V      图9 共模屏蔽驱动程序      图10 基本接地实践      图11 时间建立测试电路   图12 微分驱动程序电路      图13 压力监控电路,可以在5V单电源工作
[模拟电子]
主流<font color='red'>仪表放大器</font>芯片学习详解(1):AD620 三
ADI发布超小型芯片级封装的双通道仪表放大器
美国模拟器件公司日前发布业界首款采用16引脚4mm×4mm超小型芯片级封装的双通道仪表放大器AD8222,它也是首款可完全达到差分工作性能指标的仪表放大器。对于要求精密测量和高通道密度而尺寸受限制的工业和仪表仪器应用,AD8222为设计工程师提供双通道仪表放大器,并且其共模抑制(CMR)比同类产品高40dB,封装尺寸小50%。AD8222兼备多通道数、小封装尺寸和优良的噪声抑制性能的优势,能使工厂自动化系统、医用监护设备以及其它工业和仪表仪器设备的制造商显著提高其产品的精密度、准确度和通道密度并且缩短产品面世时间,而无需增加元器件数量或印制电路板(PCB)板面积。 使用灵活的AD8222也能够配置为差分输出仪表仪器放大器使用
[新品]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved